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1. Error en la investigación

Definición AZAR

• Deriva del árabe "az-zahr", que es el dado utilizado en el juego

• DRAE: Casualidad, caso fortuito, desgracia imprevista.
• Azar como encuentro accidental
• Azar como desorden o como complejidad
• Azar como proceso que carece de finalidad.

• Rothman, et al.: 
• Uno se refiere al resultado de un proceso aleatorio (experimento) que no puede predecirse  y el otro es un 

resultado que tampoco se puede predecir fácilmente pero que no constituye un fenómeno aleatorio.
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1. Error en la investigación

AZAR y juego

• Probabilidad (cara o sello) al lanzar una moneda es 0,5.
• Si se lanza 10 veces podría ocurrir que no se obtengan 5 caras y 5 sellos como seria lo esperado, y 

obtener combinaciones divergentes como 8:2  o 9;1 

• El azar es responsable para esta variabilidad en los resultados. 
• Lanzar dos dados no sesgados (dados con igual probabilidad de caer en un numero 

entre 1 y 6) dará dos unos o dos seis
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AZAR e investigación clínica
• El azar no se restringe al mundo del lanzamiento de 

monedas, dados o juego de cartas.

• Si tomamos una muestra de pacientes de una comunidad, el azar 
puede resultar en una inusual distribución de una enfermedad 
crónica. 

• El azar también puede ser responsable de un desequilibrio en la tasa 
de eventos en dos grupos de pacientes que se les ha dado diferentes 
tratamientos que son igualmente efectivos. 

• Se requiere herramientas estadísticas para determinar la extensión en 
la cual la distribución desequilibrada es atribuida al azar  o a otra 
explicación

1. Error en la investigación
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1. Error en la investigación

AZAR y variación aleatoria

• Como las observaciones sobre las enfermedades se realizan generalmente en muestras de pacientes 
más que en todos los individuos (población), podrían representar erróneamente la situación, incluso si 
no están sesgadas, debido al azar. 

• La diferencia de una observación de una muestra con respecto al valor real de la población, debida 
únicamente al azar, se llama variación aleatoria. 

• Si las observaciones se repiten numerosas veces en muestras de pacientes, los resultados para la 
muestra variaran alrededor del valor real. 

• La divergencia entre una observación de una muestra y el valor real de la población, debida únicamente 
al azar es la variación aleatoria
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1. Error en la investigación

• A diferencia del sesgo, que desvía los valores en 
una dirección o en otra, la variación aleatoria tiene 

tantas probabilidades de sobreestimar o 
subestimar el valor real. 

• Como consecuencia la media de observaciones 
no sesgadas tiene tendencia a corresponder al 

valor real de la población.  Aunque los resultados 
de los valores individuales no se correspondan.

SESGO y variación aleatoria
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1. Error en la investigación

Variación aleatoria y estadística

• La variación aleatoria se produce en el muestreo de pacientes para el estudio, en la 
selección de grupos de tratamiento y en las mediciones llevadas a cabo en cada grupo. 

• La variación aleatoria nunca puede eliminarse, de tal manera que cuando se evaluen 
los resultados de las observaciones clínicas siempre debe considerarse el azar.

• La estadística puede contribuir a estimar la probabilidad de que el azar justifique los 
resultados clínicos y también a disminuir dicha probabilidad durante las etapas de diseño 
y análisis. 
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1. Error en la investigación

Herramientas de medición
Inexactitudes en los 

instrumentos de medición, 
como un tensiómetro 

defectuoso o un microscopio 
mal calibrado.

Participantes del estudio
 Variaciones en la forma en 

que los individuos responden 
a las preguntas o participan 

en los experimentos.

Investigadores
Subjetividad en la observación 
o el registro de datos, incluso 

involuntariamente.

Factores externos
Eventos imprevistos o 

cambios en el entorno que 
influyen en el estudio.

El error es inevitable en la investigación. Este puede surgir de:
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1. Error en la investigación

Error de medición

• Un atributo implícito a toda variable es la susceptibilidad de ser medida. 
• La diferencia entre el valor obtenido al medir una variable con relación a su valor real y 

objetivo es el error de medición. 
• Hay dos tipos de errores:

Sistemático 
(sesgos) 

Aleatorio 
(azar)
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Error Sistemático (sesgo)
• Una desviación constante y direccional del valor real
• Normalmente ocurre debido a defectos en el diseño del estudio, la medición o el 

muestreo

Error Aleatorio (azar)
• Fluctuaciones Impredecibles en las mediciones
• Ocurre debido a variaciones aleatorias en la muestra o el proceso de medición

Existen dos tipos principales de error

1. Error en la investigación
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Sesgos

2. Error sistemático (sesgo)

• ¿Qué significa cuando se dice que un estudio es válido o creíble? 

• La validez es el grado en el cual un estudio responde en forma apropiada las 
preguntas que están siendo solicitadas o mide apropiadamente lo que intenta medir. 
El sesgo lleva a una desviación sistemática, el error del sesgo tiene dirección.

• En un ensayo clínico el sesgo lleva a subestimación o sobreestimación del efecto 
benéfico o perjudicial.

• Al iniciar el  estudio el sesgo puede ser origen de diferencias adicionales a las que se 
derivan de la intervención experimental. 
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Fuentes de variabilidad en los estudios

2. Error sistemático (sesgo)

Variabilidad debida al observador
• Tiene que ver con la apreciación del 

observador, si son dos observadores  pueden 
no estar midiendo  exactamente lo mismo

Variabilidad debida al individuo
• La relacionada con el individuo que se 

estudia, factores como animo o humor, ritmo 
circadiano entre otros.

Variabilidad debida al instrumento 
de medición
• La precisión de un tensiómetro o de 

diferentes encuestas puede variar

Variabilidad debida a errores en el 
registro de los datos
• Puede ser en el momento del registro o de la 

introducción en la base de datos.
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Sesgo de 
Selección

• Diferencias 
sistemáticas entre los 
seleccionados y no 
seleccionados

• Ejemplo: 
reclutamiento 
exclusivo de 
pacientes con cáncer 
en un hospital 
privado

Sesgo de 
Medición

• Errores en la forma en 
que se miden las 
variables, esto lleva a 
resultados 
constantemente 
inexactos

• Ejemplo: cuestionario 
que evalúa el dolor 
mal redactado o es 
culturalmente no 
sensible

Sesgo de 
Información

• Errores en la recogida, 
registro o manejo de 
datos.

• Ejemplo: 
Investigadores 
conscientes de la 
asignación del grupo 
de tratamiento de 
pacientes

Sesgo de 
Recuerdo

• Errores en la forma en 
que los participantes 
recuerdan eventos 
pasados, 
particularmente 
relevantes en los 
estudios retrospectivos

• Ejemplo: Pacientes 
con cáncer más 
propensos a recordar 
exposiciones o 
factores de riesgo 
específicos 

Sesgo de 
Publicación

• Tendencia a que los 
estudios con 
resultados positivos o 
estadísticamente 
significativos tengan 
más probabilidades de 
ser publicados que 
aquellos con hallazgos 
negativos o no 
concluyentes

• Esto puede 
distorsionar la base de 
evidencia general en 
oncología.

Existen diferentes tipos de errores sistemáticos en la investigación oncológica, estos son:
2. Error sistemático (sesgo)
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3. Minimizar el error sistemático 
Estrategias para minimizar el error sistemático

Diseño cuidadoso 
del estudio

 
Define claramente tu 

pregunta de 
investigación, la 

población de estudio y 
los criterios de 

elegibilidad para evitar 
el sesgo de selección

Protocolos 
estandarizados

Utiliza herramientas de 
medición validadas y 

procedimientos 
estandarizados para la 
recogida y el manojo de 
datos para reducir los 
sesgos de medición e 

Información

Cegamientos

Mantén a los 
investigadores y/o a los 

participantes sin 
conocimiento de las 
asignaciones de los 

grupos de tratamiento 
(si procede) para 

minimizar el sesgo del 
observador

Pruebas piloto

Prueba tus métodos y 
herramientas de 

recogida de datos en 
un estudio piloto para 

identificar posibles 
fuentes de error desde 

el principio

Formación y 
calibración

Asegúrate de que todo 
el personal de 

investigación está 
adecuadamente 

formado y de que los 
instrumentos de 

medición se calibran 
periódicamente.

Revisiones 
sistemáticas y 
metaanálisis

Al revisar la literatura 
existente, ten en cuenta 

el posible sesgo de 
publicación y utiliza 

métodos rigurosos para 
evaluar la calidad de los 

estudios incluidos.
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Fuentes de error aleatorio

• Error de muestreo
• La diferencia entre la muestra y el valor real de la población
• Las muestras más grandes reducen el error de muestreo

• Error de medición
• Fluctuaciones aleatorias en la forma en que se miden las variables, incluso 

cuando se utilizan herramientas fiables

4. Error aleatorio (azar)
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4. Error aleatorio (azar)

Impacto del error aleatorio

• Reduce la precisión
• Dificulta la detección de efectos reales

• Amplía los intervalos de confianza
• Aumenta la incertidumbre en torno a nuestras estimaciones.
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4. Error aleatorio (azar)

¿Como se determina la precisión?
• La precisión es contraria a la variabilidad. 

• Una forma de medir la precisión de una variable es midiendo la 
variabilidad para lo cual se emplea la desviación estándar de una serie 
de medidas repetidas.

• También se puede emplear el coeficiente de variación (CV) cuando se 
desea comparar dos variables cuantitativas.
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5. Gestionar el error aleatorio

Estandarizar los métodos de medición

Elabora un 
manual sobre el 
proceso de 
medición para 
que se pueda 
realizar de 
manera 
consistente.

Entrenar a los observadores

Entrena los 
diferentes 
participantes en 
la realización de 
las mediciones 
para que sea lo 
más uniforme 
posible.

Refinamiento de los instrumentos de 
medición

Los instrumentos 
mecánicos y 
electrónicos 
deben ser 
calibrados de 
manera que la 
variabilidad sea 
mínima.

Automatización de los 
instrumentos

Evitar la 
variabilidad 
reduciendo la 
manipulación 
humana.

Repetición

La repetición de 
la medida reduce 
el error aleatorio.

Estrategias para gestionar el error aleatorio
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6. Conclusiones

Comprender tanto el 
error sistemático como 

el error aleatorio es 
crucial para llevar a 

cabo una investigación 
rigurosa y fiable en 

oncología

Al tomar medidas para 
minimizar el sesgo y 

gestionar el error 
aleatorio, mejoramos la 
precisión de nuestros 

hallazgos.

Pero también 
contribuimos a una 

base de evidencia más 
sólida para una mejor 

atención al cáncer

La precisión es lo contrario de error aleatorio y la exactitud 
es lo contrario de error sistemático.
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Describing Data

3
.

1 INTRODUCTION

If there is one key concept underlying the subject of statistics, it is that of
variability. In medicine we can see this most obviously in the way people
differ in their physiological, biochemical and other characteristics and also
in their variable responses to disease and to therapy. We also often
encounter variability between machines that are supposed to be identical,
and between different observers. There are sometimes many sources of
variability present at once. For example, if I have my blood pressure
measured the value recorded by my GP will depend greatly on some
unknown underlying 'true' value, but it will also relate to the time of day,
whether I was late and had to run to the surgery, the type of sphygmoma-
nometer being used, whether I was anxious about the outcome, and so on.
When many people have their blood pressure measured other factors will
affect between-subject variability, such as age, sex and race.

In general we can divide variability into that due to known causes and
that which is unexplained. Thus, for example, in a study of men aged 25 to
65 part of the variability in their blood pressures may be ascribed to their
age, but most of the rest is unexplained. We often refer to this unexplained
variability as random variation.

In any study we will usually want to summarize some of the data in a
simple way. Sometimes this will be as far as the statistical analysis goes,
but often it is a first step. For categorical variables, such as sex and blood
group, it is straightforward to present the number in each category, usually
indicating the frequency or percentage of the total number of patients.
When shown graphically this is called a bar diagram. Figure 3.1 shows a
bar diagram of general aviation accident rates in 1974 by occupation
(Booze, 1977). A similar diagram can also be used to relate frequencies (or
rates) to values of another variable. For example, Figure 3.2 shows
perinatal mortality per 1000 births in England and Wales in 1979 by day of
the week. The higher mortality rates at the weekend are clearly seen. It is
very important that the vertical axis of a bar diagram starts at zero,
otherwise the visual impression is misleading, with the differences between
groups being exaggerated.
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Figure 3.1 Bar diagram showing general aviation accident rates (per 1000) in 1974
by occupation (Booze, 1977).
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Figure 3.2 Perinatal mortality in England and Wales in 1979 by day of the week
(Macfarlane and Mugford, 1984).

For continuous variables, such as age and serum bilirubin, there will be a
large number of different observed values, so an alternative approach is
needed. The remainder of this chapter concentrates on ways of describing
and summarizing such data both numerically and graphically.

In this chapter I shall introduce some mathematical notation for the first
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time. Further explanation of this notation can be found in Appendix A at
the end of the book.

3
.
2 AVERAGES

The obvious first step when describing a set of observations of a continu-
ous variable is to calculate the average value. In colloquial use the word
'

average
' does not have a precise meaning, but in statistics there are

several so-called 'measures of central tendency' that are precisely defined
and which can be taken as the average or typical value.

The most common of these is the arithmetic mean, usually just called the
mean, which is the sum of all the observations divided by the number of
observations. Table 3.1 shows age and lung function data for 25 patients
with cystic fibrosis. The variable shown is the maximal static inspiratory

Table 3.1 Age and PImax in 25 patients with cystic
fibrosis (O'Neill etaL, 1983)

Age PImax
Subject (years) (cm H2O)

1 7 80

2 7 85

3 8 110

4 8 95

5 8 95

6 9 100

7 11 45

8 12 95

9 12 130

10 13 75

11 13 80

12 14 70

13 14 80

14 15 100

15 16 120

16 17 110

17 17 125

18 17 75

19 17 100

20 19 40

21 19 75

22 20 110

23 23 150

24 23 75

25 23 95
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pressure (PImax) and is an index of respiratory muscle strength. The sum
of the PImax values is 2315, so the mean is 2315/25 = 92.6 cm H20. The
mean is the value usually meant when talking about 'the average'. The
mean is sometimes indicated by x (pronounced 'x bar'),

 but this shorthand

notation is best avoided other than in equations.
The other frequently used measure is the median. This is the value that

comes half-way when the data are ranked in order. For the PImax data in
Table 3.1 there are 25 observations, so the median is the 13th value in

order. If we rank the PImax values in ascending order we get

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13

PImax   40  45    70   75    75    75    75    80   80    80   85   95 95

Rank 14 15 16 17 18 19 20 21 22 23 24 25

PImax   95  95   100 100  100  110  110  110  120  125  130 150

and we can see that the median is 95 cm H2O. More easily, we can see
immediately from Table 3.1 that the median age of these patients was 14
years. When there is an even number of observations the median is defined
as the average of the two central values: if we had 24 observations the
median would be the average of the 12th and 13th values in an ordered
listing of the observations. There are usually equal numbers of observa-
tions above and below the median. However, when there is more than one

observation equal to the median, as for the PImax data, this may not be
exactly true.

The median is especially useful when some extreme data values are
censored. If observations are not recorded precisely when they are above a
certain level or below a level of detection, we cannot calculate the mean,
but we can calculate the median if we have definite values for over half the

subjects. The median is also valuable in the analysis of survival times,
which is considered in Chapter 13.

The mean and the median are both widely used to describe the average
or typical value of a set of data. The mean is much more frequently used
because this ties in well with the most common types of statistical analysis,
but the median is in no way inferior as a descriptive statistic and in some
circumstances it is much more useful than the mean, as we shall see later.

In some situations we calculate another measure known as the geometric
mean, which is usually close to the median. Its use is described in section
3

.
4

.
4

.

A final indicator of the centre of a set of data is the mode which is

simply the most common value observed. The mode is rarely of any
practical use for continuous data.

3
.
3 DESCRIBING VARIABILITY

The second aspect of describing a set of observations of a continuous
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variable is to assess the variability of the observations in some way. Any
set of data will contain many different values, for example the PImax data
shown above. We are interested in the way these values are distributed -
are they all similar or do they vary a lot? There are several ways of
tackling this problem. I shall look first at graphical methods, and then
consider numerical methods.

3.3.1 Histogram

A simple graphical way of depicting a complete set of observations is by
means of the histogram in which the number (or frequency) of observa-
tions is plotted for different values or groups of values. Table 3.2 shows
the frequency distribution of the immunoglobulin IgM in 298 healthy
children aged 6 months to 6 years, and Figure 3.3 shows a histogram of

Table 3.2 Concentrations of serum IgM in
298 children aged 6 months to 6 years
(Isaacs etaL, 1983)

IgM Number of
(g/1) Children

0
.
1 3

0
.
2 7

0
.
3 19

0
.
4 27

0
.
5 32

0
.
6 35

0
.
7 38

0
.
8 38

0
.
9 22

1
.
0 16

1
.
1 16

1
.2 6

1
.
3 7

1
.
4 9

1
.5 6

1
.6 2

1
.7 3

1
.8 3

2
.0 3

2
.1 2

2
.2 1

2
.
5 1

2
.
7 1

4
.
5 1
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Figure 3.3 Frequency histogram of IgM concentrations in 298 children aged
6 months to 6 years (Isaacs et al., 1983).

these values. If there are many different values it is often desirable to
group observations before constructing a histogram in order to get a better
visual impression. Unless the sample is very large somewhere around 8 to
15 groups will usually suffice for a satisfactory display. This will depend
upon the actual data, for it is desirable to keep the groupings simple.
Although we could group the IgM data in intervals of, say, 0.25, this goes
beyond the precision of the data. Better is the grouping in intervals of 0.2
shown in Figure 3.4. Note that the width of each vertical bar covers the
range of values that have been grouped. So, for example, when we group
0
.1 and 0.2 we are actually including values between 0.05 and 0.25 even

though the data were not recorded that accurately. A histogram is similar
to a bar diagram, but because the frequencies relate to a continuous
variable adjacent bars of a histogram should touch.

The bars in histograms are usually all the same width, because the
groupings are the same size. If the groups are not the same size this should
be allowed for by remembering that it is the area of each bar that is
proportional to the frequency, not its height. This principle is illustrated on
data showing the age distribution of road accident casualties in the London
borough of Harrow in 1985. Table 3.3 shows the data as presented. Most
of the casualties were adults, with the greatest number in the age range 25
to 59. Clearly the widths of the groupings vary considerably, from 1 to 35
years in fact, and this must be taken account of in a histogram of the data.
Note that in order to include the 60+ age group in a histogram we have to
assume a reasonable upper age limit - here it will be taken as 80.
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Figure 3.4 As Figure 3.3 but data grouped in intervals of 0.2 g/1.

Table 3.3 Road accident casualties in the

London Borough of Harrow in 1985 (exclud-
ing 65 with unknown age)

Age Frequency

0- 4

5- 9

10-15

16

17

18-19

20-24

25-59

60+

Total

28

46

58

20

31

64

149

316

103

815

First, consider what happens if we ignore the above warning and draw a
histogram where, for each age group, the height indicates the frequency
shown in Table 3.3 and the width shows the age range - this is shown in
Figure 3.5. This histogram suggests that accident victims are much less
likely to be 16 and 17 year olds than adults, whereas we would probably
expect the opposite to be true. We get the correct picture by making the
frequencies correspond to the area of each bar rather than its height, as is
shown in Figure 3.6. What we have done is consider the number of
casualties per year of age - where we don

't have this explicitly we take the
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Figure 3.5 Incorrect histogram of road accident data of Table 3.3.
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Figure 3.6 Correct histogram of road accident data.

average value in that age group. Figure 3.6 shows a true impression of the
data, from which we can see that road accident casualties are more 1*0
to be aged 16 to 24 than any other age group.

Note that this histogram just shows the observed numbers of casual
It does not indicate the risk of a road accident for people of varying agc
for this we would also need to know the age distribution of the popula00
and would need to assume that all casualties hved in Harrow and that

Harrow residents had accidents elsewhere.
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It is sometimes more useful to show the proportion of the sample in each
interval. All the frequencies are converted into percentages by dividing by
the sample size and multiplying by 100. Figure 3.7(a) shows the resulting
relative frequency histogram for the IgM data, which differs from Figure
3

.3 only in the way the vertical axis is labelled. An alternative way of
plotting the data is to join the mid-points of the tops of all the vertical bars
of the histogram; this is called a frequency polygon. Figure 3.7(b) shows
such a plot for the same data.
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The vertical axis of a histogram must start at zero, and there should not
be any breaks in the scale. Otherwise the visual impression will be
misleading. Likewise three-dimensional effects should not be used.

3.3.2 Stem-and-leaf diagram

A clever modification of the histogram called a stem-and-leaf diagram
allows all the actual observations to be shown too. Figure 3.8 shows the
PImax data from Table 3.1 redrawn as a stem-and-leaf diagram. The raw
data can be reconstructed by joining the numbers on the left (the stems) to
each of the numbers on the right (the leaves) on the same row. This is a
very economical way of reproducing the raw data, and is more useful than
a simple list of the data.

4 05

5

6

7 05555

8 0005

9 5555

10 000

11 000

12 05

13 0

14

15 0

Figure 3.8 Stem-and-leaf diagram of PImax data in Table 3.1.

The stem-and-leaf diagram works well in many circumstances, especially
where there are many different values, but the best format depends on the
nature of the data and the sample size. The IgM data in Table 3.2 cannot
be made into a successful stem-and-leaf diagram using five 'stems'
(0,1,2,3,4), but we can split each group to get a useful diagram, as in
Figure 3.9.
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Figure 3.9 Stem-and-leaf diagram of IgM data in Table 3.2.
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3.3.3 Cumulative frequencies

We saw earlier how the distribution of a sample of observations can be
shown as the percentage of the sample with values in each of several small
ranges. This was shown in the relative frequency histogram in Figure 3.7.
We can take this idea a stage further by considering for each group the
proportion of subjects in that group or a lower one. Thus we calculate the
cumulative frequency at each level - the proportion of observations less
than or equal to each value. The calculations are shown in Table 3.4. The
cumulative relative frequencies can be plotted in a histogram, as in Figure
3
.10(a). However, for cumulative frequencies there is no need to group the

data like this because we can plot the cumulative frequencies directly, as in
Figure 3.10(b). This plot can be used either to see what percentage of

Table 3.4 Cumulative frequency distribution of 298 IgM values

Cumulative

Relative Cumulative Relative

IgM Frequency     Frequency Frequency Frequency
g/1 % %

0
.

1 3                1.0 3 1.0

0
.
2 7               2.3 10 3.4

0
.
3 19                6.4 29 9.7

0
.
4 27               9.1 56 18.8

0
.
5 32 10.7 88 29.5

0
.
6 35 11.7 123 41.3

0
.
7 38 12.8 161 54.0

0
.8 38 12.8 199 66.8

0
.
9 22                7.4 221 74.2

1
.
0 16                5.4 237 79.5

1
.1 16               5.4 253 84.9

1
.2 6 2.0 259 86.9

1
.3 7 2.3 266 89.3

1
.4 9 3.0 275 92.3

1
.5 6 2.0 281 94.3

1
.6 2 0.7 283 95.0

1
.7 3 1.0 286 96.0

1
.8 3 1.0 289 97.0

2
.0 3 1.0 292 98.0

2
.1 2 0.7 294 98.7

2
.2 1 0.3 295 99.0

2
.5 1 0.3 296 99.3

2
.7 1 0.3 297 99.7

4
.
5 1 0.3 298 100.0

Total        298 99.9
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Figure 3.10 IgM data shown as (a) Cumulative relative frequency histogram,
(b) Cumulative distribution.

observations he above or below any chosen level, or to find the values

which a given percentage of children's IgM values lie above or below. For

example, we can easily see that the median IgM concentration was 0.7g/l
This information cannot be obtained from a histogram or cumulate

histogram if values have been grouped.
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Cumulative frequencies are especially useful for comparing the distribu-
tion of values in two or more different groups of individuals. Figure 3.11(a)
shows relative frequency histograms for the age at first tooth eruption of
1568 children of smokers and 1576 non-smokers. Figure 3.11(b) shows
cumulative histograms of the same data. Figure 3.11(c) shows cumulative
frequency polygons of the same data. Because we are considering cumulat-
ive frequencies we join the right-hand points of the vertical bars rather
than the mid-points as in Figure 3.7(b). This plot shows that the difference
between the groups is not as great as was suggested in Figure 3.11(b) - the
two groups were side by side in the previous plot, which can lead to a
misleading visual impression. We can easily see from Figure 3.11(c) that
the median age at first tooth eruption was about one week earlier in the
children of smokers.

3
.4 QUANTIFYING VARIABILITY

Graphical methods are important for examining the variability of data, but
it is necessary also to have a numerical way of summarizing the amount of
variability. Used in conjunction with the mean, this would provide an
informative but brief summary of a set of observations. There are three
main approaches to quantifying the variability of a set of data. We can
either quote the range of all the values, specific values derived from the
cumulative frequency distribution, or we can obtain a numerical measure
of the dispersion of the observations around the mean.

3.
4.1 Range

The simplest way to describe the spread of a set of data is to quote the
lowest and highest values. These values are known as the range. The range
of the IgM data was 0.1 to 4.5 g/l. This is not a satisfactory summary,
because it takes account of only the most extreme (and perhaps most
peculiar) values at each end of the data, and the way the intermediate
values are distributed will not influence the range. Thus for the IgM data
we have no idea that 4.5 was considerably more than the second highest
value of 2.7 g/l. Mainly for this reason the range is not widely used.

3.4.2 Gentiles

By specifying two values that encompass most rather than all of the data
values we get round much of the difficulty. For example, we could
calculate the values between which 90% of the observations lie. The value

below which a given percentage of the values occur is called a centile or
percentile, and corresponds to a value with a specified cumulative relative
frequency.



32 Describing data

0 Smokers | Non-smokens
25

8
20

5
8- 15

10

s

h.

5 -

6   7   B   9   10 11 12
0
01 2 3 4

Age (months)

 Smokers I Non-smokers
100 i

8
>. 80

I 60 H

I 40
la

I20

0

1
0    123456789   10 11 12

Age (months)

100 -

.

 BO -

 40 -

| 20
u

0 -
.

/

n 1
 

1
 

1
 

1
 

1
 

1
 

1 1
 

1
 

1
 

1
 

1
 r

0   1   2   3   4   5   6   7   B   9  10 11 12 13
Age (months)

Figure 3.11 Age at first tooth eruption of children born to smokers (-") 
non-smokers ( ) (Rantakallio and Makinen, 1984): (a) Relative frequency

histogram; (b) Cumulative relative frequency histogram; (c) Cumulative relate
frequency polygon.



Quantifying variability 33

We require the 5th and 95th centiles of the distribution of IgM values.
From the last column of Table 3.4 we can see that the cumulative relative

frequency passes 5% somewhere in the group of IgM values of 0.3 g/l, and
95% is reached at the value of 1.6 g/l.

A more correct general approach is to calculate the ranks of the required
observations, which we do by taking the necessary percentages of the
sample size plus one. Here we need the values with ranks
0

.05 x 299 = 14.95 and 0.95 x 299 = 284.05. This calculation usually leads
to non-integer values, so we may need to interpolate. For example we
want the value of IgM 0.95 of the way between the 14th and 15th
observations in rank order. As these are, from Table 3.4, both equal to
0

.3 g/l the 5th centile is 0.3 g/l, and likewise the 95th centile is 1.7 g/l.
However, if we want the 10th centile, we would need the IgM value
corresponding to a rank of 0.10 x 299 = 29.9. The observations with ranks
29 and 30 are 0.3 and 0.4 g/l and we take the value nine-tenths of the way
between these values, by calculating 0.3 + 0.9(0.4 - 0.3) = 0.39 g/l. The
values 0.3 and 1.7 are thus the 5th and 95th centiles of the observed

distribution of IgM in this sample of children and these two values thus
specify what we can call a 90% central range-the range within which
the central 90% of values lie (i.e. excluding 5% at each end of the
distribution).

Other centiles can be quoted rather than the 5th and 95th. The most
common alternative is to quote a 95% central range p th and 97
centiles), but an 80% central range (10th and 90th centiles) is sometimes
used. The 50th centile is another name for the median, as half of the

observations are less than (and greater than) this value. The 25th and 75th
centiles are known as quartiles; these values together with the median
divide the data into four equally populated subgroups. The numerical
difference between the 25th and 75th centiles is the inter-quartile range,
and is occasionally used to describe variability.

A simple but useful semi-graphical way of summarizing data using
centiles is the box-and-whisker plot. Figure 3.12 shows a box-and-whisker
plot for the IgM data. The box indicates the lower and upper quartiles and
the central line is the median. The points at the ends of the 'whiskers' are
the 2 % and 97 % values, although the whiskers sometimes indicate the
extreme values. For a single set of data a histogram is more informative,
but several sets of data can be summarized economically using the
box-and-whisker plot. Sometimes any values outside the range of the
whiskers are plotted individually.

3.4.3 Standard deviation

The alternative approach to quantifying variability is based on the idea of
averaging the distance each value is from the mean. For an individual with
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Figure 3.12 Box-and-whisker plot of the IgM data, showing the 2 , 25, 50, 75 and
972% cumulative relative frequencies (centiles).

an observed value the distance from the mean x is xl, - Jc, and if we
have n observations we have a set of n such distances, one for each

individual. For observations below the mean the difference will be negat-
ive. We can calculate the average distance between the observations and
their mean, but the sum of these distances, H x, - Jc), is always zero
because of the way the mean is calculated from the individual observations.
However, if we square the distances before we sum them we get a quantity
that must be positive. The average of these squared differences thus gives a
measure of individual deviations from the mean. This qu
variance, and is defined as

This quantity is called the

- *
-)2

i=l

n - 1

Note that we divide by n - 1 rather than the more obvious n. Dividing by
n gives the variance of the observations around the sample mean, but we
virtually always consider our data as a sample from some larger popula-
tion, and wish to use the sample data to estimate the variability in the
population. Dividing by n - 1 gives us a better estimate of the population
variance, although clearly for large samples the difference is negligible.

The variance will turn up in later chapters, notably when discussing the
technique known as analysis of variance. For our present purpose, the
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variance is not a suitable measure for describing variability because it is not
in the same units as the raw data. We do not, for example, wish to express
the variability of a set of blood pressure measurements in square mm Hg.
The obvious solution to this problem is to take as our measure the square
root of the variance. We call this quantity the standard deviation. The
standard deviation is usually abbreviated to sd or SD or s or o (the Greek
letter sigma), and is defined as

- x)2

n - 1

Standard deviation is not a good name for this statistic as there is nothing
'standard' about it. It may more reasonably be thought of as approximately
the average deviation (or distance) of the observations from the mean.

Many calculators can calculate the standard deviation, by means of a key
marked s or a. (The use of the Greek a here rather than s is not strictly
correct, as will be explained in the next chapter. If there are keys marked
on and on_i the latter should be used.)

However, should we wish to do the calculation ourselves there is a much

easier formula to use, which is mathematically equivalent:

"4Sx2 - (ZxY/n
n - 1

(Note the simplification of the 2 notation, as described in Appendix A.)
Using this formula we can calculate the standard deviation from the sum of
the observations, 2*, and the sum of the squares of the observations, Zx2.
We do not need to calculate the individual distances from the mean.

For example, for the PImax data shown in Table 3.1 the sum of the data
and the sum of the squares of the data are

2> = 2315     and     2>2 = 229275

so the mean PImax is 2315/25 = 92.60 cm H2O and the standard deviation
is

1229275 - 2315725
S =  24

 

.

= 24
.92 cm H20.

Note that I shall keep an extra decimal place at present for the mean and
standard deviation because I shall be doing some further calculations. One
decimal place would be sufficient when reporting these results.
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The standard deviation has an important role in data analysis, but here
we are concerned with its value as a descriptive statistic. In fact, although
the standard deviation is widely used for this purpose it is useful only
indirectly for describing the variability of a set of data. We can say, for
example, that in many circumstances the large majority (about 95%) of a
set of observations will be within two standard deviations of the mean. The

appropriateness of this statement depends on the shape of the distribution
of the data. If the distribution is reasonably symmetric then the above
statement will usually be true.

For the PImax data in Figure 3.8 the mean was 92.60 and the standard
deviation was 24.92 cm H2O. The values that are two standard deviations
either side of the mean are 92.60 - 2(24.92) = 42.76 cm H20 and
92.60 + 2(24.92) = 142.44 cm H20. (We often use the expression
'mean ±250'

 to mean both of these values, i.e. the mean 'plus or minus'
twice the standard deviation.) All but two of the 25 observations were
within this range; we would expect to find on average one observation
outside the range mean ±2SD (i.e. about 5% of 25).

3.
4

.4 Skewed distributions

For data which do not have a symmetric distribution we need to be careful
when using the standard deviation in the way just described. For example,
the IgM data in Figure 3.3 clearly have an asymmetric distribution-there
is a long right-hand 'tail'. This is called a skewed distribution. The mean
and standard deviation of the IgM data are 0.80 and 0.47 g/l respectively.
Calculating the mean ±2SD gives the values -0.14 and 1.74. The lower
value is negative, which is not a possible value of IgM. The upper value of
1

.74 is exceeded by 12 of the observations, 4% of the total. The two values
clearly do not describe the range of the bulk of the data very well.
Although they still include about 95% of the observations, the exclusions
are all in one tail.

For measurements that cannot be negative, which is usually the case, we
can infer that the data have a skewed distribution if the standard deviation

is more than half the mean. There is no guarantee that the converse is
true, however, but a histogram will quickly reveal whether the data are
skewed or not. Skewness like that of the IgM data is called positive
skewness and is common. The opposite phenomenon, with an extended left
hand tail, is called negative skewness and is rare.

In general, when we have data with a skewed distribution we use other
ways of describing the data. There are two main possibilities. The first is to
transform the data mathematically so that the transformed data have a
more nearly symmetric distribution. The most frequent device is to take
logarithms (logs) of the data. The rationale for this approach will be
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discussed in Chapter 7. We can see that it works well here, however, from
Figure 3.13 which shows a histogram of logic IgM values. The mean and
SD of the log data are -0.158 and 0.238 respectively, so that the values
mean ±2SD are -0.63 and +0.32. These values are indicated in Figure
3
.13. They cut off 10 values in the lower tail of the distribution and 6 in

the upper tail, and thus give a range of values encompassing 282/298 or
94.6% of the observations. The cut-off values can be 'back-transformed' to

the original scale giving 0.23 and 2.08, and reference to Table 3.2 shows
the 16 values outside these limits. If we back-transform (or 'antilog') the
mean of the log data we get a quantity known as the geometric mean. The
geometric mean of the IgM data is thus 10"°158 = 0

.695 g/1. Where log
transformation successfully removes skewness the geometric mean will be
similar to the median, and will be less than the mean of the raw data. The

standard deviation of the log data cannot be meaningfully back-trans-
formed.

Note that log data can be negative, and that it does not matter whether
logs to base e or base 10 are used. In this example, logs to base 10 were
used, with the function 10* used for the back-transformation. Log transfor-
mation is only useful for removing positive skewness.

The alternative approach to describing the distribution of skewed data is
to calculate the centiles corresponding to a chosen central range. For
example, to get the values that enclose 95% of the observations we need to
calculate the 22th and 972th centiles. Using the method described in the
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previous section, these values are obtained by interpolation as 0.2 and
2

.0 g/1. These values of 0.2 and 2.0 g/1 are called empirical centiles as
opposed to the earlier values of 0.23 and 2.08 (obtained from the mean
±2SD of the log data), which are estimated centiles. The two methods
agree well for these data. Likewise the median IgM value is 0.7 g/1, which
is very close to the geometric mean.

3.4.5 Comment

The standard deviation is one of the key quantities in statistical analysis.
Its value for describing variability is conditional on the distribution of the
data. Although it is always valid to calculate the standard deviation we can
infer that about 95% of the observations were in the interval mean ±2SD

only if we know (or assume) that the distribution of the data was
reasonably symmetric. In fact, as happens with the IgM data, the range
mean ±2SD may include about 95% of the observations even when the
distribution is skewed. However, while we may reasonably use just the
mean and SD to summarize such data, the skewness will be hidden. For

skewed data, it is preferable to use the median and a 90% or 95% central
range to summarize a set of observations. However, it is not practical to
quote centiles for small samples, so the range can be given. Otherwise, the
standard deviation can be used. It has the advantage of using each
observation directly and it is easier to calculate (by computer) for large
amounts of data.

The question of the shape of the distribution of one's data is of
fundamental importance when choosing a method of analysis, as will be
seen in later chapters.

3
.
5 TWO VARIABLES

3.5.1 Describing data in two or more groups

In many studies comparisons are made between different groups. For
example, two groups of patients jnay be given different treatments and the
outcomes observed. It is desirable in such studies to demonstrate that the

characteristics of the two groups of subjects were comparable at the start of
the study. As an example, Table 3.5 shows the characteristics of the groups
of subjects in a clinical trial comparing short-wave diathermy treatment,
osteopathic treatment, and an ineffective placebo treatment in patients
with non-specific low back pain (Gibson et a/., 1985). The characteristics of
the three groups at the start of the study (often called 'baseline' values) are
shown as numbers and percentages for categorical variables, and as means
and standard deviations for the two continuous variables. This information
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is usually sufficient to judge the comparability of the groups. I shall
consider how we assess whether they are comparable in Chapter 15. For
the moment we can see that the mean duration of pain had a skewed
distribution as the mean is a lot less than twice the standard deviation in all

three groups.

Table 3.5 Details of patients in each treatment group in a study of low back pain
(Gibson et a/., 1985)

Short-wave

diathermy

Treatment group

Osteopathy Placebo

Number of patients 34
Sex 16F/18M
Mean age (SD) 35 (16)
Mean duration of pain

in weeks (SD) 18 (11)
Median pain score at pre- 45 (5-82)

sentation (range)*
Radiological

abnormalities of the spine 12 (34%)

41

21F/20M
34 (14)

16 (14)
35 (4-90)

12 (29%)

34

11F/23M
40(16)

17 (11)
48 (10-96)

11 (32%)

Visual analogue scale

Sometimes we wish to show graphically the distribution of a continuous
variable in two or more groups. This can be done by means of a separate
histogram for each group, these being aligned vertically, but there is a
rather clearer format that shows all the observations. Figure 3.14 shows the
distribution of uric acid in a group of women before, during and after
pregnancy (Lind et al., 1984). All the data are shown in the graph, and the
authors have also given the mean, standard deviation and number of
observations at each stage. This informative figure thus effectively incor-
porates a table while using little extra space. Bar diagrams are often used
to show means and standard deviations in each group. This is not a good
format - this information is better in a table, or else a more informative

display, such as that in Figure 3.14 or a box-and-whisker diagram, should
be used.
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Figure 3.14 Distribution of serum uric acid in a group of healthy women before,

during and after pregnancy (reproduced from Lind et al., 1984, with permission).

3.5.2 Relation between two continuous variables

The relation between two continuous variables may be shown graphically
in a scatter diagram. This is a simple graph in which the values of one
variable are plotted against those of the other. For example, Figure 3.15
shows a scatter diagram of the PImax data of Table 3.1 related to age.
Scatter diagrams are very simple to produce using statistical computer
programs. When there are two (or more) individuals with identical values
of both variables this should be shown, preferably by moving one point
slightly. Some software packages print the actual number of coincident
points up to 9, so that '9' means '9 or more'

. It is easy to indicate
subgroupings by using different plotting symbols. For example, in Figure
3
.15 males and females could have been indicated by closed and open

circles. The scatter diagram is a very useful descriptive tool, and is often
valuable as a prelude to formal statistical analysis. The graph in Figure
3
.14 is really a scatter diagram relating a continuous and a categorical

variable.
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Figure 3.15 Scatter diagram of PImax by age.

3
.
6 THE EFFECT OF TRANSFORMING THE DATA

If we change* our data in some way we will inevitably change the mean and
standard deviation too. In some situations we alter, or transform, a

complete set of data, in which case the effect on the mean and standard
deviation may be predicted.

The simplest case to consider is where we alter the units of measure-
ment. If we change the IgM data from values recorded as g/1 to mg/1 each
observation will be 1000 times as large. It is easy to see that the mean will
also be 1000 times bigger, and inspection of the formula for the standard
deviation shows that it too will be 1000 times bigger. In contrast, if we add
or subtract a constant value from all the observations, the mean of the new

data is obtained by the same subtraction or addition but the standard
deviation is unaffected. Thus to the mean of a set of temperatures
recorded as degrees Celsius we must add 273.15 to give the mean of the
equivalent thermodynamic temperature on the Kelvin scale.

Any transformation based on multiplication, division, subtraction or
addition is called a linear transformation, because if we plot the new values
against the original values we get a straight line. The mean and standard
deviation of the transformed values are obtained in a simple manner. For
other, non-linear transformations, however, we cannot obtain the mean
and standard deviation of the transformed data in this way. Examples of
non-linear transformation are taking logarithms (illustrated in section 3.4.4)
or square roots. Thus the mean of the log data is not the same as the log
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of the mean of the raw data. The reasons for transforming data are
considered in Chapter 7.

3
.
7 DATA PRESENTATION

3.
7.1 Numerical presentation

Data summary should not be by the mean (or median) alone, but some
indication of variability should also be provided. It is common to put the
SD in brackets after the mean. When these values are quoted in text the
format mean ±SD, as in 'their mean diastolic blood pressure was
102.3 ± 11.9 mmHg', should be avoided. (Indeed several medical journak
no longer allow this notation.) It is much better to write 102.3 mmHg (SD
11.9) because this format makes it clear what the second number is and
also avoids the implication that the range of values from mean -SD to
mean +SD is of specific importance. As we have seen, it is the range mean
±2SD which can often be used to describe the spread of the large majority
(about 95%) of a set of observations.

It is not possible to give absolute rules for numerical presentation, but
the following guidelines will generally be reasonable. It is usually appropri-
ate to quote the mean to one extra decimal place compared with the raw
data. The mean should not be presented to ridiculous (and spurious)
'

accuracy
'

. For example, it is clearly absurd to quote the mean length of
gestation of a group of babies to the nearest 10 minutes. This is done when
quoting weeks of gestation to 3 decimal places. The standard deviation
should usually be given to the same accuracy as the mean, or with one
extra decimal place.

3.7.2 Tables

Whether or not to put descriptive data in tables will depend on the number
of variables and groups of subjects. Table 3.5 shows a recommended way
of presenting descriptive data, both continuous and categorical. In general
it is preferable to put data of a like kind in columns rather than rows as
the eye can scan columns more easily, but this is not always possible. For
example, in Table 3.5 the means of the same variables in the three
treatment groups are shown in rows, as it is usually more natural that way.
However, means and SDs are clearly distinguished side by side, with the
latter in brackets for clarity.

Tables can also be used to show raw data, although this is only
reasonable when there are not too many observations. Where possible, it is
helpful to order the data by one of the variables - after all, there is usually
nothing special about the order in which the patients were seen. Many of
the tables in this book, such as Table 3.1, have been ordered in this way.
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3.
7.3 Graphs

It is difficult to offer much general advice about when it is appropriate to
use a graph rather than a table. Graphs offer the opportunity to show
much more data than could be shown in a table, and are thus probably
most suited to data that cannot easily be displayed in a table. There is no
point in using a graph to show, for example, the means and standard
deviations of one variable in two or three groups. Some displays, such as
histograms, are in essence graphical - Figure 3.3 is a much clearer display
than Table 3.2. It is possible to combine the best features of a table and a
figure, and an example was given in Figure 3.14. This form of display
should be used more often.

Scatter diagrams are particularly useful for showing the relation between
two variables. It is important that all the data points should be shown,
which can pose difficulties when there are coincident points (see section
6

.7). Different symbols can be used to indicate subgroups of the data.
Graphs are a very powerful way of getting a message across, but the

same data can be portrayed in many ways, with a variety of visual effects.
For example, Figure 3.16 shows three alternative displays of the data in
Table 3.6 showing average amounts of bread consumed per person per
week in London from 1960 to 1980. Features visible in one or more figures
include a gradual reduction in total bread consumption, a more than
proportionate fall in consumption of white bread, and a rise in consump-
tion of brown and wholemeal bread in the last five year period. These
features are probably more easily seen in Table 3.6.

Table 3.6 Amounts of bread consumed in London from 1960 to 1980 (g per person
per week) (Sivell and Wenlock, 1983)

Type Year
of bread                   1960         1965 1970 1975 1980

White                      1040          975 915 785 620

Brown                        70            80 70 75 115

Wholemeal                  25            20 15 20 45

Other                       155            80 85 75 105

Total                       1290         1155 1080 955 880

An excellent book on graphical methods in general is that by Tufte
(1983), and graphs for statistics are discussed by Moses (1987). Many
innovative ideas for descriptive methods are described by Tukey (1977).
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Figure 3.16 Average amount of bread consumed per person per week in London
from 1960 to 1980; three alternative graphs of the data in Table 3.6: (a) adjacent
bars, (b) stacked bars, (c) graph of relative changes since 1960.
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EXERCISES

3.1 The table overleaf shows some data for 65 patients with rheumatoid
arthritis treated with sodium aurothiomalate (SA) (Ayesh et al., 1987).
The total dose of SA is shown, together with values of the sulphoxida-
tion index (SI), which measures the capacity to convert organic
divalent alkyl sulphide to its corresponding sulphoxide form. The
patients have been separated into 28 without and 37 with major
adverse reactions to the drug.

(a) Some values of SI are given as '>80.0\ What is the name given to
observations like this?

(b) What is the difficulty about drawing histograms of SI in each
group? What shape are the distributions?

(c) Give two reasons why it is preferable to calculate the median
rather than the mean to describe the average SI value.

(d) Obtain the median SI for each group of patients. (This should take
less than ten seconds.)

(e) Obtain the median total dose of SA for the group with adverse
reactions.

(f) Produce stem-and-leaf diagrams to compare the age distributions in
the two groups.

(g) Do the data support the idea that patients experiencing adverse
reactions were on average older than those without adverse reac-
tions?
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Without adverse reactions With adverse reactions
Total Total

dose of dose of

Age     SA (mg)      SI Age SA (mg) SI

1 44       1560           1.0       1 53 360 2.0
2 65       1310           1.2       2 74 2010 2.0
3 58         850            1.2       3 29 1390 2.0
4 57       1250           1.7       4 53 660 3.0
5 51         950            1.8       5 67 1135 3.5
6 64        850           1.8       6 67 510 5.3

7 33       1200           1.9       7 54 410 5.7

8 61       1390           2.0       8 51 910 6.5

9 49       1450           2.3       9 57 360 13.0
10 67       3300           2.8      10 62 1260 13.0
11 39       2760           2.8      11 51 560 13.9

12 42         860           3.4      12 68 1135 14.7
13 35       1810           3.4      13 50 1410 15.4

14 31       1310           3.8      14 38 1110 15.7

15 37       1250           3.8      15 61 960 16.6
16 43       1210           4.2      16 59 1310 16.6

17 39       1460           4.9      17 68 910 16.6

18 53       2310           5.4      18 44 1235 22.0

19 44       1360           5.9      19 57 2950 22.3

20 41       1910           6.2      20 49 360 33.2

21 72         910          12.0      21 49 1935 47.0

22 61       1410          18.8      22 63 1660 61.0

23 48       2460          47.0      23 29 435 65.0

24 59       1350          70.0      24 53 310 65.0

25 72         810        >80.0      25 53 310 >80.0

26 59       1460        >80.0      26 49 410 >80.0

27 71         760        >80.0      27 42 690 >80.0

28 53         910        >80.0      28 44 910 >80.0

29 59 1260 >80.0

30 51 1260 >80.0

31 46 1310 >80.0

32 46 1350 >80.0

33 41 1410 >80.0

34 39 1460 >80.0
35 62 1535 >80.0
36 49 1560 >80.0

37 53 2050 >80.0
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3
.2 (a) Does Figure 3.1 indicate that professional pilots are more likely to

have an aviation accident than other groups?

The following table shows the data that were plotted in Figure
3
.
1

, together with the aviation accident rates per 100000 hours of
recent flight time (Booze, 1977).

Number of   Rate per    Rate per
accidents     1000*        100000 hr

Professional pilots 1302 15.9 0.2
Lawyers 57 11.0 1.5
Farmers 166 10.1 1.3

Sales representatives 137 9.0 1.2
Physicians 76 8.7 1.8
Mechanics and repairmen 44 6.9 1.5
Policemen and detectives 48 6.6 1.8

Managers and administrators    643 6.0 0.7
Engineers 125 4.7 1.1
Teachers 43 4.2 1.1

Housewives 29 3.7 3.2

Academic students 188 3.2 3.7

Armed Forces Members 111 1.6 0.7

*in the specified occupation

(b) The rates per 100000 hours can also be made into a bar diagram.
From such a diagram, or from the figures shown in the table,
which two groups of pilots had most accidents? Why do the two
sets of figures give different answers? (A scatter diagram is useful
to see the relation between the two.)

3
.3 Calculate the centiles used to construct the box-and-whisker plot in

Figure 3.12 using the method of calculation given in section 3.4.2.
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repair capabilities as a genetic marker for susceptibility to ultraviolet light–induced nonmelanoma 
skin cancer in young cases and controls.24 Regrettably, however, most environmental exposures 
that can be assessed by means of objective biologic markers represent current or very recent rather 
than past exposures, such as the levels of serum cotinine to indicate exposure to cigarette smoking, 
and are thus of limited usefulness.25

When a well-defined cohort is available, nested case-control or case-cohort studies (see Chapter 1,  
Section 1.4.2) allow the evaluation of certain hypotheses free of recall bias (or temporal bias; see 
Section 4.3.3). Typically, in these case-control studies, information on exposure and confounders is 
collected at baseline (i.e., before the incident cases occur), thus reducing the likelihood of system-
atic recall differences between cases and controls. The study discussed previously examining the 
relationship of tanning ability to melanoma18 (see previously here and Section 4.3.3) is an example 
of a case-control study within a cohort (the Nurses’ Health Study cohort); the application of the 
premelanoma diagnosis questionnaire avoids the recall bias that was observed when the analysis 
was based on information obtained from the postmelanoma questionnaire.18

Although exposure recall bias is typically a problem of case-control studies, it may also occur in 
cohort studies. In the latter type of study, it may be present at the outset of the study when catego-
rization of individuals by level of exposure relies on recalled information from the distant or recent 
past, as when attempts are made to classify cohort participants at baseline by duration of exposure.

Interviewer Bias
When data collection in a case-control study is not masked with regard to the disease status of 
study participants, observer bias in ascertaining exposure, such as interviewer bias, may occur. 
Interviewer bias may be a consequence of trying to “clarify” questions when such clarifications 
are not part of the study protocol and failing to follow either the protocol-determined probing 
or skipping rules of questionnaires. Although it is often difficult to recognize interviewer bias, 
it is important to be aware of it and to implement procedures to minimize the likelihood of its 
occurrence. Attempts to prevent interviewer bias involve the careful design and conduct of quality 
assurance and control activities (see Chapter 8), including development of a detailed manual of 
operations, training of staff, standardization of data collection procedures, and monitoring of data 
collection activities. Even when these methods are in place, however, subtle deviations from the 
protocol (e.g., emphasizing certain words when carrying out the case but not the control inter-
views or vice versa) might be difficult to identify. Additional measures to recognize and prevent 
this bias are the performance of reliability/validity substudies and the masking of interviewers 
with regard to case-control status.

Reliability and validity substudies in samples are described in more detail in Chapter 8, Section 8.3. 
They constitute an important strategy that needs to be carried out systematically with quick feed-
back to interviewers who do not follow the protocol or who have encountered problems. Reliability 
substudies of interviews are not as straightforward as those aimed at assessing the reproducibility of 
laboratory measurements, such as those described in many of the examples in Chapter 8. Assessing 
the reliability of interview data is difficult because of intraparticipant variability and because, when 
interviews are done at separate points in time, interviewees or interviewers may recall previous 
responses, with the resultant tendency to provide/record the same, albeit mistaken, responses.

As for recall bias, validity studies using independent sources (e.g., medical charts) can be 
conducted to assess accuracy of data collection by interviewers.

Masking of interviewers with regard to case-control status of study participants is difficult, but 
when feasible, it may remove an important source of bias, particularly when the interviewer is 
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familiar with the study hypothesis. On occasion, by including a health question for which a frequent 
affirmative response is expected from both cases and controls, it is possible to mask the interviewers 
with regard to the main study hypothesis and have them believe that the hypothesis pertains to 
the “misleading” question. Such a strategy was employed in a case-control study of psychosocial 
factors and myocardial infarction in women in which questions about hysterectomy, which were 
often answered positively in view of the high frequency of this intervention in the United States, 
led the interviewers to believe that the study was testing a hormonal hypothesis.26

A mistake made in an early study of lung cancer and smoking conducted by Doll and Hill27 in 
which some controls were erroneously classified as cases provided an unplanned opportunity to 
assess the possible occurrence of interviewer bias. In this study, the odds of exposure to smoking 
in the misclassified controls was very similar to that of the nonmisclassified controls and much 
lower than that of cases, thus confirming the absence of interviewer bias. This example suggests the 
possibility of assessing interviewer bias by using “phantom” cases and controls and/or purposely 
misleading interviewers to believe that some cases are controls and vice versa.

4.3.2 Outcome Identification Bias
Outcome (e.g., disease) identification bias may occur in both case-control and cohort studies. This 
bias may result from either differential or nondifferential misclassification of disease status, which 
in turn may be due to an imperfect definition of the outcome or to errors at the data collection stage.

Observer Bias
In a cohort study, the decision as to whether the outcome is present may be affected by knowledge 
of the exposure status of the study participant. This may happen particularly when the outcome 
is “soft” or subjective, such as, for example, when reporting migraine episodes or psychiatric 
symptoms. There may be observer bias at different stages of the ascertainment of the outcome, 
including at the stage of applying pathologic or clinical criteria. A fairly crude example of observer 
bias is the assignment of a histologic specimen to a diagnosis of “alcoholic cirrhosis” when the 
pathologist knows that the patient is an alcoholic. A documented example of observer bias is 
the effect of the patient’s race on the diagnosis of hypertensive end-stage renal disease (ESRD). 
In a study conducted by Perneger et al.,28 a sample of nephrologists were sent case histories of 
seven patients with ESRD. For each case history, the simulated race of each patient was randomly 
assigned to be “black” or “white.” Case histories that identified the patient’s race as black were 
twice as likely to result in a diagnosis of hypertensive ESRD as case histories in which the patient’s 
race was said to be white.

This type of observer bias occurs when the ascertainment of outcome is not independent from 
the knowledge of the exposure status and results in differential misclassification of the outcome. 
Thus, measures aimed at masking observers in charge of deciding whether the outcome is present by 
exposure status would theoretically prevent observer bias. When masking of observers by exposure 
status is not practical, observer bias can be assessed by stratifying on certainty of diagnosis. For 
example, exposure levels can be assessed in relationship to incidence of “possible,” “probable,” or 
“definite” disease. Observer bias should be suspected if an association is seen for only the “softer” 
categories (e.g., possible disease).

Another strategy to prevent observer bias is to perform diagnostic classification with multiple 
observers. For example, two observers could independently classify an event, and if disagreement 
occurred, a third observer would adjudicate; that is, decision on the presence or absence of the 
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outcome would have to be agreed on by at least two of three observers. This is the strategy used to 
classify events such as acute myocardial infarction and stroke in both the Atherosclerosis Risk in 
Communities (ARIC) Study and the Multi-Ethnic Study of Atherosclerosis (MESA).21,29

Respondent Bias
Recall and other informant biases are usually associated with identification of exposure in 
case-control studies; however, outcome ascertainment bias may occur during follow-up of a cohort 
when information on the outcome is obtained by participant response, for example, when collecting 
information on events for which it is difficult to obtain objective confirmation, such as episodes 
of migraine headaches.

Whenever possible, information given by a participant on the possible occurrence of the 
outcome of interest should be confirmed by more objective means, such as hospital chart review. 
Objective confirmation may, however, not be possible, for example, for nonhospitalized events or 
events in which laboratory verification is impossible, such as pain or acute panic attacks. For these 
types of outcomes, detailed information not only on presence versus absence of a given event but 
also on related symptoms that may be part of a diagnostic constellation may be of help in prevent-
ing respondent bias. For example, the questionnaire on the occurrence of an episode of migraine 
headaches in a study by Stewart et al.30 included questions not only on whether a severe headache 
had occurred but also on the presence of aura, nausea, and fatigue accompanying the headache. 
This strategy allowed more objectivity in classifying migraines than the simple determination of the 
presence or absence of pain. For several outcomes, such as angina pectoris and chronic bronchitis, 
standardized questionnaires are available (see Chapter 8). Other soft outcomes are diagnosed by 
using symptom scales, such as the Center for Epidemiologic Studies Depression Scale, which has 
a good correlation with psychiatrist-diagnosed depression.31 The validity and limitations of some 
of these instruments, such as, for example, the Rose Questionnaire for the diagnosis of angina 
pectoris,32 have been assessed.33-35

4.3.3 The Result of Information Bias: Misclassification
Information bias leads to misclassification of exposure and/or outcome status. For example, when 
there is recall bias in a case-control study, some exposed subjects are classified as unexposed and 
vice versa. In a cohort study, a positive outcome may be missed. Alternatively, a pseudo-event 
may be mistakenly classified as an outcome (a “false positive”). The examples of both differen-
tial and nondifferential misclassification in this section refer to exposure levels in case-control 
studies. Misclassification of case-control status in case-control studies and of exposure and out-
come in cohort studies can be readily inferred, although they are not specifically discussed to  
avoid repetition.

There are two types of misclassification bias: nondifferential and differential.

Nondifferential Misclassification
In a case-control study, nondifferential misclassification occurs when the degree of misclassification 
of exposure is independent of case-control status (or vice versa).

Nondifferential Misclassification When There Are Two Categories. A simplistic hypothetical 
example of nondifferential misclassification of (dichotomous) exposure in a case-control study is 
shown in EXHIBIT 4-2. In this example, misclassification of exposed subjects as unexposed occurs 
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in 30% of cases and 30% of controls. In this simple situation when there are only two exposure 
categories (for instance, “yes” or “no”), nondifferential misclassification tends to bias the association 
toward the null hypothesis.

In the hypothetical example shown in Exhibit 4-2, misclassification occurs in only one direction: 
Exposed individuals are misclassified as unexposed. Often, however, misclassification occurs in both 
directions; that is, exposed individuals are classified as unexposed or “false negatives” (i.e., the correct 
classification of the truly exposed, or sensitivity, is less than 100%), and unexposed individuals are 
classified as exposed or false positives (i.e., the correct classification of the unexposed, or specific-
ity, is less than 100%). In a case-control study, nondifferential misclassification occurs when both 

EXHIBIT 4-2 Hypothetical example of the effect of nondifferential misclassification of two categories of exposure with 
30% of both exposed cases and exposed controls misclassified as unexposed.

No misclassification

Exposure Cases Controls

Yes 50 20

No 50 80

OR =













=

50
50
20
80

4 0.

30% Exposure misclassification in each group

Exposure Cases Controls

Yes 50 – 15 = 35 20 – 6 = 14

No 50 + 15 = 65 80 + 6 = 86

OR =













=

35
65
14
86

3 3.

Effect of nondifferential misclassification with two exposure categories: to bias the OR toward the 
null value of 1.0. (It “dilutes” the association.)

Bold numbers represent misclassified individuals.
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the sensitivity and specificity of the classification of exposure are the same for cases and controls 
but either (or both) is less than 100%. Estimation of the total numbers of individuals classified as 
exposed or unexposed by using a study’s data collection procedures and exposure level definitions 
is akin to the estimation of “test-positive” and “test-negative” individuals when applying a screening 
test. Thus, the notions of sensitivity and specificity, schematically represented in FIGURE 4-4, can be 
used to explore the issue of misclassification in more depth.

A hypothetical example showing nondifferential misclassification of exposure in a case-control 
study in both directions—that is, when exposed subjects are misclassified as unexposed and unex-
posed subjects are misclassified as exposed—is presented in EXHIBIT 4-3. The exhibit shows the effects 
of nondifferential misclassification resulting from an exposure ascertainment with a sensitivity of 
90% and a specificity of 80%. The fact that these sensitivity and specificity values are the same for 
cases and controls identifies this type of misclassification as nondifferential.

The net effect of misclassifying cases at a sensitivity of 90% and a specificity of 80% is shown 
in column (III) of Exhibit 4-3. The totals in column (III) indicate the numbers of cases classified 
as exposed or unexposed in the study and reflect the misclassification due to the less-than-perfect 
sensitivity and specificity values. Thus, cases classified as exposed include both the 72 persons 
truly exposed (true positives) and the 4 cases which, although unexposed, are misclassified as 
exposed (false positives) due to a specificity less than 100% (see also Figure 4-4). Similarly, cases 
classified in the study as unexposed include both the 16 truly unexposed cases (true negatives) 
and the 8 exposed cases misclassified as unexposed (false negatives) because the sensitivity is less 
than 100%. Exhibit 4-3 also shows similar data for controls. The net effect of the classification of 
controls by exposure at the same sensitivity (90%) and specificity (80%) levels as those of cases is 
shown in column (VI). The observed (biased) odds ratio of 2.6 in the study underestimates the true 
odds ratio of 4.0, as expected when misclassification of a dichotomous exposure is nondifferential 
between cases and controls.

FIGURE 4-4 Application of sensitivity/specificity concepts in misclassification of exposure: schematic representation 
of true and misclassified relative odds. Sensitivity of exposure ascertainment = TP ÷ (TP + FN); specificity of exposure 
ascertainment = TN ÷ (TN + FP).

True
results

Cases Controls

Study
results

TP + FP = a

FN + TN = c

Misclassified
OR:

True OR:

Total study
cases

Total study
controls

TP + FP =  b

FN + TN = d

A C B D

Exp Unexp UnexpExp

A/C ÷ B/D

a/c ÷ b/d

TP FP

FN TN

TP FP

FN TN

Exposed

Unexposed

Exp, exposed; FN, false negative; FP, false positive; TN, true negative; TP, true positive; Unexp, unexposed.
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EXHIBIT 4-3 Effects of nondifferential misclassification on the odds ratio (sensitivity = 0.90; specificity = 0.80).

Exp, exposed; OR, odds ratio; Se, sensitivity; Sp, specificity; Unexp, unexposed.

Unexposed

Exposed

Controls

Study
cases

Study
controls

50

76

24

55

45

50

Cases

True
distribution

Observed
distribution

72

8

45

80/20

50/50

5

10

40

4

16

True OR:

= 4.0

76/24

55/45
= 2.6

Exp UnexpExp Unexp

Se = 0.90 Sp = 0.80

80 20

Se = 0.90 Sp = 0.80

Misclassified

OR:

(I) (II) (III) (IV) (V) (VI)

In the example shown in Exhibit 4-3, nondifferential misclassification of a dichotomous ex-
posure is shown to be affected by sensitivity and specificity levels, such that the net effect is to bias 
the odds ratio toward 1.0. In addition to reflecting sensitivity and specificity of the procedures for 
exposure definition and ascertainment, the magnitude of the bias also depends on the exposure 
prevalence, particularly in the presence of a large control group. For example, EXHIBIT 4-4 shows a 
hypothetical situation where the true strength of the association between exposure and disease is 
identical to that in Exhibit 4-3 (odds ratio = 4.0), as are the sensitivity and specificity of exposure 
measurement (90% and 80%, respectively). However, because of the lower prevalence of exposure 
(i.e., 20/820 or 2.4% among controls, compared to 50% in Exhibit 4-3), the bias is substantially 
more pronounced (biased odds ratio = 1.3 versus 2.6 in Exhibit 4-3). In general, low exposure 
prevalence tends to be associated with a higher degree of bias when the specificity is low. If spec-
ificity is high but sensitivity is low, however, a higher degree of bias will result from a situation in 
which exposure is common. The complex relationships between bias and sensitivity/specificity of 
exposure definition and its prevalence are illustrated in TABLE 4-6, showing examples of the effects 
of sensitivity, specificity, and exposure prevalence in controls on the observed odds ratio in several 
hypothetical situations where the true odds ratio is 4.0.

Nondifferential Misclassification When There Are More Than Two Exposure Categories. The 
rule that the direction of a nondifferential misclassification bias dilutes the strength of the asso-
ciation may not hold in certain nondifferential misclassification situations involving more than 
two exposure categories. A hypothetical example involving three exposure levels in a case-control 
study (“none,” “low,” and “high”) is discussed by Dosemeci et al.36 (TABLE 4-7). In this example, 40% 
of both cases and controls in the “high” exposure category were misclassified as belonging to the 
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TABLE 4-6 Nondifferential misclassification: hypothetical examples of the effects of sensitivity and specificity of 
exposure identification and of exposure prevalence in controls on a study’s odds ratio when the true odds ratio is 4.0.

Sensitivity* Specificity†
Prevalence of  

exposure in controls
Observed  
odds ratio

0.90 0.85 0.200 2.6

0.60 0.85 0.200 1.9

0.90 0.95 0.200 3.2

0.90 0.60 0.200 1.9

0.90 0.90 0.368 3.0

0.90 0.90 0.200 2.8

0.90 0.90 0.077 2.2

Bold figures represent the factor (sensitivity, specificity, or exposure prevalence) that is allowed to vary for fixed values of the other two factors.
*Sensitivity of the exposure identification is defined as the proportion of all truly exposed correctly classified by the study.
†Specificity of the exposure identification is defined as the proportion of all truly unexposed correctly classified by the study.

EXHIBIT 4-4 Effects of nondifferential misclassification on the odds ratio when the exposure prevalence in  
controls is low.

Exp, exposed; OR, odds ratio; Se, sensitivity; Sp, specificity; Unexp, unexposed.

Unexposed

Exposed

Controls

Study
cases

Study
controls

20

145

405

178

642

800

Cases

True
distribution

Observed
distribution

45

5

18

50/500

20/800

2

160

640

100

400

True OR:

= 4.0

145/405

178/642
= 1.3

Exp UnexpExp Unexp

Se = 0.90 Sp = 0.80

50 500

Se = 0.90 Sp = 0.80

Misclassified

OR:

(I) (II) (III) (IV) (V) (VI)
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TABLE 4-7 Examples of the effects of nondifferential misclassification involving three exposure categories; 
misclassification of 40% between “high” and “low” (A) and between “high” and “none” (B).

Case-control 
status

True exposure status

None Low High

Cases 100 200 600

Controls 100 100 100

Odds ratio 1.00 2.00 6.00

Misclassified exposure status (in situations A and B)

A. Adjacent categories: 40% of cases and controls in “high” misclassified as “low”

Cases 100 200 CC + 240 MC = 440 600 CC – 240 MC = 360

Controls 100 100 CC + 40 MC = 140 100 CC – 40 MC = 60

Odds ratio 1.00 3.14 6.00

B. Nonadjacent categories: 40% of cases and controls in “high” misclassified as “none”

Cases 100 CC + 240 MC = 340 200 600 CC – 240 MC = 360

Controls 100 CC + 40 MC = 140 100 100 CC – 40 MC = 60

Odds ratio 1.00 0.82 2.47

CC, correctly classified; MC, misclassified.
Data from Dosemeci M, Wacholder S, Lubin JH. Does nondifferential misclassification of exposure always bias a true effect toward the null value? Am 
J Epidemiol. 1990;132:746-748.36

adjacent category, “low”; the net effect was an increase in the odds ratio for the “low” category 
without a change for the “high.” Misclassification for nonadjacent categories of exposure in the 
example—that is, between “high” and “none”—resulted in the disappearance of the truly graded 
relationship and, assuming no random error, the emergence of a J-shaped pattern. Additionally, as 
shown by Dosemeci et al.,36 misclassification of nonadjacent exposure categories may invert the 
direction of the graded relationship.

Differential Misclassification
Differential misclassification occurs when the degree of misclassification differs between the groups 
being compared; for example, in a case-control study, the sensitivity and/or the specificity of the 
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classification of exposure status is different between cases and controls. (Note that differential 
misclassification may occur even when only one of these validity indices differs.) In a cohort study, 
differential misclassification will occur when the accuracy of outcome definition differs between 
exposed and nonexposed.

Whereas the general tendency of nondifferential misclassification of a dichotomous exposure 
factor is to weaken a true association, differential misclassification may bias the association either 
toward or away from the null hypothesis. Thus, it is difficult to predict the direction of the bias when 
differential misclassification occurs, as it is the result of a complex interplay involving differences 
between cases and controls in sensitivity, specificity, and prevalence of exposure.

A hypothetical example of differential misclassification in a case-control study is given in 
EXHIBIT 4-5 in which the sensitivity of capturing the exposure in cases is 96% and that in controls 
is only 70%. Specificity in the example is 100% for both cases and controls. The better sensitivity 
among cases leads to a higher proportion of truly exposed subjects being identified in cases than 
in controls, yielding a biased odds ratio further away from 1.0 than the true odds ratio (true odds 
ratio = 4.0; biased odds ratio = 5.7). To underscore the difficulties in predicting results when there 
is differential misclassification, if the same calculations are done using a higher specificity in cases 
(100%) than in controls (80%), the odds ratio is biased toward the null hypothesis (EXHIBIT 4-6), as 
a poorer specificity in controls offsets the higher sensitivity in cases.

EXHIBIT 4-7 shows a hypothetical example that illustrates a shortcut to the calculation of mis-
classified odds ratios. The table shows the complements to sensitivity and specificity values and 
their application to the relevant cells in cases and controls. In this example, misclassification is 
differential, and yet the misclassified odds ratio is biased toward the null hypothesis.

EXHIBIT 4-5 Hypothetical example of the effects of differential misclassification on the odds ratio in which, for 
sensitivity, cases > controls and, for specificity, cases = controls.

Exp, exposed; OR, odds ratio; Se, sensitivity; Sp, specificity; Unexp, unexposed.

Exp UnexpExp Unexp

Observed
distribution

Unexposed

Exposed

Controls

Study
cases

Study
controls

20

48

52

14

86

80

Cases

True
distribution

48

2

14

50/50

20/80

6

0

80

0

50

True OR:

= 4.0

48/52

14/86
= 5.7

Se = 0.70 Sp = 1.0

50 50

Se = 0.96 Sp = 1.0

Misclassified

OR:

(I) (II) (III) (IV) (V) (VI)



EXHIBIT 4-6 Hypothetical example of the effects of differential misclassification on the odds ratio in which, for both 
sensitivity and specificity, cases > controls.

Exp, exposed; OR, odds ratio; Se, sensitivity; Sp, specificity; Unexp, unexposed.

Exp UnexpExp Unexp

Observed
distribution

Unexposed

Exposed

Controls

Study
cases

Study
controls

20

48

52

30

70

80

Cases

True
distribution

48

2

14

50/50

20/80

6

16

64

0

50

True OR:

= 4.0

48/52

30/70
= 2.1

Se = 0.70 Sp = 0.80

50 50

Se = 0.96 Sp = 1.0

Misclassified

OR:

(I) (II) (III) (IV) (V) (VI)

EXHIBIT 4-7 Shortcut calculation of misclassified odds ratios in a case-control study. Exposure information sensitivity: 
cases = 0.96; controls = 0.85; specificity: cases = 0.80 and controls = 0.70. Application of complements of sensitivity 
and specificity values estimates the number of false negatives and false positives in each exposure category. For 
example, 1 – sensitivity (0.04) for cases results in 2 exposed cases being misclassified as unexposed (false negatives); 
1 – specificity for cases (0.20) results in 10 unexposed cases being misclassified as exposed (false positives). Similar 
calculations are done for controls.

FN, false negative; FP, false positive; Se, sensitivity; Sp, specificity. 

Exposed

Cases (n = 100) Controls (n = 100)

1 – Se

True
distribution

True
distribution

0.04 0.150.20 0.30Total
misclassified

50 20 41

50 80 59

–2 –3

+2 +3

+10 +24

–24

58

42–10

(FP) (FP)

(FN) (FN)

1 – Sp 1 – Se 1 – Sp

Unexposed

Total
misclassified

This differential misclassification biases the odds ratios toward the null hypothesis.

True odds ratio : 50/50

20/20
= 4.0

Misclassified odds ratio: 
58/42

41/59
= 1.98

147
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TABLE 4-8 Examples of the effects of differential sensitivity and specificity of exposure ascertainment on the odds ratio 
(OR) for a true OR of 3.86 and a control exposure prevalence of 0.10.

Exposure ascertainment

Odds ratio

Sensitivity* Specificity†

Cases Controls Cases Controls

0.90 0.60 1.00 1.00 5.79

0.60 0.90 1.00 1.00 2.22

1.00 1.00 0.90 0.70 1.00

1.00 1.00 0.70 0.90 4.43

*Sensitivity of the exposure identification is defined as the proportion of all truly exposed correctly classified by the study.
†Specificity of the exposure identification is defined as the proportion of all truly unexposed correctly classified by the study.

Examples of the isolated effects of sensitivity (for a specificity of 100%) or specificity (for a 
sensitivity of 100%) on the odds ratio in a hypothetical case-control study with differential misclas-
sification of exposure and a control exposure prevalence of 10% are shown in TABLE 4-8.

An example of differential misclassification of exposure was documented by Weinstock et al.18 

This example was used previously here to illustrate the concept of recall bias (see Section 4.3.1). 
In this study, melanoma cases and controls selected from participants of the Nurses’ Health Study 
cohort and matched for duration of follow-up were compared with regard to their report of “hair 
color” and “tanning ability” both at baseline and after the case was diagnosed. In this example, 
the differential misclassification in the postdiagnosis interview probably occurred because the 
disease status was known to the case and had the potential to affect recall of exposure. Therefore, 
the premelanoma diagnosis interview is assumed to accurately reflect the true association. The 
main results of the study are summarized in TABLE 4-9. The  discussion that follows focuses on the 
“exposure” categories that were found associated with an increase in odds using the case-control 
data obtained after the occurrence of melanoma (“red or blond” and “no tan or light tan” for hair 
color and tanning ability, respectively).

Compared with the predisease development data, the odds for hair color among cases did not 
change when the postmelanoma interview data were used (11:23 in both interviews) and increased 
only slightly among controls (from 37:197 to 41:193); as a result, the odds ratio changed relatively 
little (prediagnosis odds ratio = 2.5; postdiagnosis odds ratio = 2.3). The effect of differential 
misclassification of tanning ability, however, was severe, leading to a reversal of the direction of 
the association. Assuming no random variability, the true association (i.e., that detected using the 
premelanoma diagnosis information) suggests a protective effect (odds ratio = 0.7), whereas 
the observed postdiagnosis association (odds ratio = 1.6) indicates a greater melanoma odds 
associated with a low tanning ability. It is of interest that the misclassification of exposure as 
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measured by tanning ability seems to have resulted in only a slight change in odds of exposure in 
controls (from 79:155 to 77:157). In cases, however, the misclassification effect was substantial, 
with the number of individuals classified as exposed increasing from 9 to 15 between the first 
and second interviews.

The cross-tabulation of the premelanoma and postmelanoma diagnosis data enables a more 
detailed analysis of this situation by the calculation of sensitivity and specificity of tanning abil-
ity ascertainment in cases.* As shown in TABLE 4-10, the sensitivity of 89% of the postmelanoma 
diagnosis interviews resulted in the correct classification of eight of the nine truly exposed cases. 
However, a specificity of only 72% led to a relatively large number of unexposed persons in the 
false-positive cell and thus to a marked increase in the postdiagnosis exposure odds (true exposure 

TABLE 4-9 Reported hair color and tanning ability among incident cases and controls in a case-control study of 
melanoma within the Nurses’ Health Study cohort.

Premelanoma diagnosis  
information (gold standard)

Postmelanoma diagnosis 
information

Cases Controls Cases Controls

Hair color

Red or blond (exposed) 11  37 11  41

Brown or black (unexposed) 23 197 23 193

Odds ratio 2.5 2.3

Tanning ability

No tan, practically no tan, or 
light tan (exposed)

 9  79 15  77

Medium, average, deep, or 
dark tan (unexposed)

25 155 19 157

Odds ratio 0.7 1.6

Data from Weinstock MA, Colditz GA, Willett WC, et al. Recall (report) bias and reliability in the retrospective assessment of melanoma risk. Am 
J Epidemiol. 1991;133:240-245.18 

*In the paper by Weinstock et al.,18 sensitivity and specificity of postdiagnosis responses on tanning ability were provided 
for only cases.
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odds in cases, 9:25 or 0.36:1.0; biased exposure odds, 15:19 or 0.79:1.0). Such change resulted 
in an odds ratio in the postdiagnosis study in a direction opposite to that of the true value. As 
mentioned previously (Section 4.3.1), differential misclassification in the study by Weinstock 
et al.18 probably occurred because of recall bias. Additional misclassification may have occurred 
because the questions on hair color and tanning ability were not exactly the same in the inter-
views conducted before and after diagnosis. The latter, however, would be expected to result in 
nondifferential misclassification (equally affecting cases and controls). (In addition, if the mis-
classification had been nondifferential, that is, if the sensitivity and specificity values observed 
among the cases had been the same in controls, the odds ratio would have changed from the true 
[premelanoma diagnosis] value of 0.7 to a misclassified value of 0.83, that is, an estimate of the 
association biased toward the null value.)

An example of both differential and nondifferential misclassification is given by a case-control 
study of childhood acute lymphoblastic leukemia conducted by Infante-Rivard and Jacques.37 Four 
hundred ninety-one cases and two sets of age-, sex-, and broad geographic area–matched controls 
were chosen, one set from a population sample and the other from among hospital patients. For 
each individual in the study, the authors measured the actual distance between the residence and the 
nearest power line and compared this distance with the parent’s answer to the question, “Within a 
radius of 1 km of your house, was there a high-voltage power line?” The authors classified cases into 
those living in a geographic area where people were concerned about an excess of the disease (“GA” 
cases) and “other” cases. When comparing GA cases with either population or hospital controls, 
substantial differential misclassification was detected, with a higher sensitivity but lower specificity 

TABLE 4-10 Distribution of incident cases in the Nurses’ Health Study cohort, 1976 to 1984, according to responses 
given with regard to tanning ability prior to the development of melanoma and after diagnosis was made.

Postmelanoma diagnosis 
information

Premelanoma diagnosis information
(gold standard)

No tan, practically
no tan, or light tan

(exposed)

Medium, average,
deep, or dark tan

(unexposed)

Total
(case-control
classification)

No tan, practically no tan, or 
light tan (exposed)

8 (TP)  7 (FP) 15

Medium, average, deep, or 
dark tan (unexposed) 

1 (FN) 18 (TN) 19

Total (true classification) 9
Sensitivity:
8/9 = 89%

25
Specificity:

18/25 = 72%

34

FN, false negatives; FP, false positives; TN, true negatives; TP, true positives.
Data from Weinstock MA, Colditz GA, Willett WC, et al. Recall (report) bias and reliability in the retrospective assessment of melanoma risk.  
Am J Epidemiol. 1991;133:240-245. 18
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seen for GA cases (TABLE 4-11). If, to calculate the odds ratio, analyses were limited to “other” cases 
versus hospital controls, however, nondifferential misclassification would have resulted, as their 
sensitivity and specificity values were found to be almost the same.

Effect of Misclassification of a Confounding Variable
Misclassification also affects the efficiency of adjustment for confounding effects. Whereas a 
nondifferential misclassification of a potential risk factor tends to bias the measure of association 
toward the null hypothesis, nondifferential misclassification of a confounding variable results in an 
imperfect adjustment when that variable is matched or controlled for in the analyses (see Chapters 5 
and 7).38 This imperfect adjustment results in residual confounding (see Chapter 5, Section 5.5.4, 
and Chapter 7, Section 7.6).

Prevention of Misclassification
Misclassification has been extensively discussed in the epidemiologic literature,39-42 reflecting its im-
portance in epidemiologic studies. As seen in the examples described in this section, misclassification 
may severely distort the magnitude of an association between a risk factor and a disease. If the true 
relative risk or odds ratio is close to 1.0, a nondifferential misclassification may completely mask 
the association. For example, for an exposure with a prevalence as high as 16% (i.e., in a range not 
unlike that of many risk factors), if the true odds ratio is approximately 1.3, the observed odds ratio 
may be virtually 1.0 if a nondifferential misclassification resulted from a measurement procedure 
with both sensitivity and specificity levels of approximately 70%. Differential misclassification of 
a confounding variable, on the other hand, may either dilute or strengthen an association or even 
produce a spurious one. When the exposure is common, failing to demonstrate a real relationship 
or inferring that an association exists when it is spurious may have serious public health conse-
quences (see Chapter 10).

TABLE 4-11 Sensitivity and specificity of response by parent of childhood (age 9 years or less) acute lymphoblastic 
leukemia cases to question, “Within a radius of 1 km (1000 m) of your house, was there a high-voltage power line?” 
Montreal Island, Quebec, Canada, 1980–1993.

Sensitivity (%)* Specificity (%)*

GA cases† 61.9 54.4

Other cases 34.9 90.6

Population controls 22.2 89.4

Hospital controls 35.8 90.2

*Gold standard: measured distance.
†Cases living in a geographic area where people were concerned about an excess of acute lymphoblastic leukemia cases.
Data from Infante-Rivard C, Jacques L. Empirical study of parental recall bias. Am J Epidemiol. 2000;152:480-486.37



152 Chapter 4 Understanding Lack of Validity: Bias

Data are usually not available to allow a comparison between correctly classified and mis-
classified individuals in terms of available characteristics (e.g., educational level), but when 
they are, they may be informative. As seen in Table 4-10, of the 34 incident cases included 
in the case-control study on melanoma nested in the Nurses’ Health Study cohort, 26 were 
correctly classified (8 true positives and 18 true negatives),18 and 8 were misclassified (7 false 
positives and 1 false negative). A comparison could be made, for example, between the false 
positives and true negatives on the one hand (addressing the issue of specificity) and between 
the false negatives and true positives on the other (addressing the issue of sensitivity). In the 
Nurses’ Health Study, the authors reported no important differences between the correctly 
and incorrectly classified cases. (When studying tanning ability, it would not be unreasonable 
to postulate that recall of tanning ability could be influenced by factors such as family history 
of skin diseases or involvement in outdoor activities.) Similarity in pertinent characteristics 
of correctly classified and misclassified persons may perhaps indicate that recall bias is not a 
probable explanation for the misclassification and raises the possibility that the information 
bias originated from problems related to the instrument or the observer. Thus, the comparison 
between misclassified and nonmisclassified subjects need not be limited to respondent charac-
teristics and should also include aspects of the data collection procedures. When interviews are 
taped, adherence to the protocol by interviewers can be compared. Additionally, information 
should be obtained on the reliability and validity of the instrument (e.g., a questionnaire), as 
discussed in Chapter 8.

A more general approach to assess information bias is based on the evaluation of the odds of 
“inaccurate self-reporting” as the outcome of interest (i.e., without specification of sensitivity or 
specificity). An example is given by a study of the validity of self-reported AIDS-specific diagnoses 
(such as esophageal candidiasis) vis-à-vis AIDS diagnoses documented by AIDS surveillance regis-
tries, with the latter used as the gold standard.43 In this study, when compared with former smoking 
and no smoking, current smoking was found to be strongly related to inaccurate self-reporting of 
any AIDS-specific diagnoses, as expressed by an odds ratio of 2.6 (95% confidence interval, 1.2, 
5.6). On the other hand, the odds of inaccurate self-reporting in this study did not appear to be 
related to age, ethnic background, education, or time since the patient had first tested positive for 
the human immunodeficiency virus (HIV).

Prevention of misclassification of exposure and outcome is a function of the state-of-the-art 
measurement techniques that can safely be applied to the large number of subjects participating 
in epidemiologic studies. The use of objective (e.g., biological) markers of exposure and more 
accurate diagnostic techniques for ascertainment of outcomes, such as the use of ultrasound or 
computerized tomography (CT) scan to diagnose asymptomatic atherosclerosis,20,44 constitutes 
the most efficient approach for ameliorating the problems related to misclassification bias. In the 
meantime, if sensitivity and specificity of outcome or exposure measurements are known, it is 
possible to correct for misclassification; for example, in a case-control study, this can be done by 
using available formulas that estimate a “corrected odds ratio” as a function of the “observed odds 
ratio” and the estimated sensitivity and specificity of the exposure classification.40-43,45 Further-
more, correction methods that can be applied to situations in which measurement errors affect 
both exposure variables and covariates (either categorical or continuous variables) have been 
described.46 Similarly to the imputation methods used to attempt to correct for selection bias (see 
Section 4.2.1), when misclassification parameters are unknown, sensitivity analysis could be used 
to obtain a range of plausible “corrected” estimates under different assumptions about the levels 
of misclassification (see Chapter 10, Section 10.3).
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4.4 Combined Selection/Information Biases
This section discusses biases that have both selection and information components. They include 
biases related to medical surveillance, cross-sectional studies, and evaluation of screening. The sec-
tions on cross-sectional and screening evaluation biases may seem somewhat repetitious vis-à-vis 
previous discussions on selection and information biases in this chapter. They have, however, been 
included here because they reflect examples specific to these areas and thus may be of special value 
to those especially interested in cross-sectional and screening intervention studies.

4.4.1 Medical Surveillance (or Detection) Bias
Medical surveillance bias occurs when a presumably medically relevant exposure leads to a closer 
surveillance of study outcomes that may result in a higher probability of detection in exposed 
individuals (i.e., when the identification of the outcome is not independent of the knowledge of 
the exposure). This type of bias is particularly likely when the exposure is a medical condition 
or therapy—such as diabetes or use of oral contraceptives—that leads to frequent and thorough 
checkups and the outcome is a disease that is characterized by a high proportion of subclinical cases 
and thus likely to be diagnosed during the frequent medical encounters resulting from the need 
to monitor the exposure. For example, although there may be no basis for believing that oral con-
traceptive use can lead to renal failure, a spurious association would be observed if women taking 
oral contraceptives were more likely than other women to have medical checkups that included 
repeated measurements of glomerular filtration rate.

Depending on the study design, medical surveillance bias can be regarded as a type of either 
selection bias or information bias. In the context of a case-control study, medical surveillance bias 
can occur if cases are more likely to be identified (or selected into the study) if they are exposed 
(see Figure 4-2). In a cohort study, medical surveillance bias may be akin to information bias if, 
for example, the exposed individuals undergo a more thorough examination than the unexposed 
individuals.

Medical surveillance bias is more likely to occur when the outcome is ascertained through 
regular healthcare channels (e.g., electronic health records). Alternatively, when the outcome is 
assessed systematically, regardless of exposure in a concurrent cohort design, medical surveillance 
bias is less likely to occur.3 Thus, meticulously standardized methods of outcome ascertainment 
are routinely used in most major cohort studies, such as the classic Framingham Study47 or the 
Atherosclerosis Risk in Communities Study.20 Another strategy to prevent medical surveillance 
bias that can be used when conducting cohort studies is to mask exposure status when ascertaining 
the presence of the outcome.

The strategies mentioned heretofore may not be feasible, however, when carrying out a case-control 
study in which the case diagnosis may have already been affected by the presence of the exposure. 
When this occurs, for analytical purposes, information should be obtained on the frequency, intensity, 
and quality of medical care received by study participants. For example, to assess the relationship 
between use of hormone replacement therapy and a given disease with a subclinical component 
(e.g., non–insulin-dependent diabetes) using a traditional case-control design, it is important to 
take into consideration medical care indicators, such as the frequency of medical visits in the past 
and whether the individual has medical insurance. Because education and socioeconomic status are 
usually related to availability and use of medical care, they too should be taken into consideration 
when trying to assess surveillance bias.



154 Chapter 4 Understanding Lack of Validity: Bias

It is also possible to obtain information on variables that indicate awareness of health prob-
lems, such as compliance with screening exams and knowledge of subclinical disease or of results 
of blood measurements. For example, in a prospective study of the relationship of vasectomy to 
the risk of clinically diagnosed prostate cancer (that is, not through systematic examination), 
the possibility of surveillance bias was assessed by examining variables that might reflect greater 
utilization of medical care.48 In this study, no differences were found between subjects who had 
and those who had not had vasectomy with regard to their knowledge of their blood pressure or 
serum cholesterol levels. The proportions of study participants who had had screening sigmoid-
oscopy were also similar, leading the authors to conclude that vasectomized men were not under 
a greater degree of medical surveillance than those who had not been vasectomized. In addition, 
the frequency of digital rectal examinations was similar between the vasectomized (exposed) and  
the nonvasectomized (unexposed) groups, implying equal access to a procedure that may lead to the  
diagnosis of the study outcome (prostate cancer).

Finally, when medical surveillance bias occurs, the disease tends to be diagnosed earlier in 
exposed than in unexposed individuals; as a result, the proportion of less advanced disease in a 
cohort study is higher in the exposed group. In a case-control study, the bias is denoted by the 
fact that the association is found to be stronger or present only for the less advanced cases. In the 
cohort study discussed previously, Giovannucci et al.48 found that the histologic severity staging 
of prostate cancer was similar for vasectomized and nonvasectomized men, a finding inconsistent 
with what would be expected if medical surveillance had been more intensive in the vasectomized 
group. Stratification by disease severity at diagnosis is thus an additional strategy for examining 
and taking into consideration the possibility of surveillance bias.

4.4.2 Cross-Sectional Biases
Cross-sectional biases can be classified as incidence–prevalence bias and temporal bias. The former 
is a type of selection bias, whereas the latter can be regarded as an information bias.

Incidence–Prevalence Bias
Incidence–prevalence bias may result from the inclusion of prevalent cases in a study when the goal 
is to make inferences in relation to disease risk. As discussed in Chapter 3, Section 3.3, the strength 
of an association is sometimes estimated using the prevalence rate ratio rather than the relative risk, 
as when analyzing data from a cross-sectional survey or when assessing cross-sectional associations 
at baseline in a cohort study. If the investigator is interested in assessing potentially causal associ-
ations, the use of the prevalence rate ratio as an estimate of the incidence ratio is subject to bias. 
Equation 2.3, described in Chapter 2, Section 2.3, shows the dependence of the point prevalence 
odds [Prev/(1.0 – Prev)] on cumulative incidence (Inc) and disease duration (Dur), assuming that 
incidence and duration are approximately constant:

Prev
Prev

Inc Dur
1 0. −

= ×

Equation 2.3 can be rewritten as Equation 2.4,

Prev Inc Dur Prev= × × −( . )1 0
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thus demonstrating that, in addition to incidence and duration, prevalence is a function of the term 
(1.0 – Prev) (which, in turn, obviously depends on the magnitude of the point prevalence rate).

As a corollary of Equation 2.4, the point prevalence rate ratio comparing exposed (denoted by 
subscript “+”) and unexposed (denoted by subscript “–”) individuals, obtained in cross-sectional studies, 
will be a function of (1) the relative risk, (2) the ratio of the disease duration in exposed individuals 
to that in unexposed individuals, and (3) the ratio of the term (1.0 – Prev) in exposed individuals to 
the same term in unexposed individuals. Ratios 2 and 3 represent two types of incidence–prevalence 
bias, that is, the duration ratio bias and the point prevalence complement ratio bias, respectively, when 
the prevalence rate ratio (PRR) is used to estimate the relative risk (see Chapter 3, Section 3.3),

PRR Dur
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where q+ and q– are the cumulative incidence values for exposed and unexposed individuals, 
respectively.

Duration Ratio Bias. This type of bias (which can be thought of as a type of selection bias) occurs 
when the prevalence rate ratio is used as a measure of association and the duration of the disease 
after its onset is different between exposed and unexposed persons. (Because duration of a chronic 
disease is so often related to survival, this type of bias may also be designated as survival bias.) For 
diseases of low prevalence, when the duration (or prognosis) of the disease is independent of the 
exposure (i.e., the same in exposed and unexposed), the prevalence rate ratio is a virtually unbiased 
estimate of the relative risk. On the other hand, when the exposure of interest affects the prognosis 
of the disease, bias will be present, as shown in the examples later in this chapter.

Point Prevalence Complement Ratio Bias. Even if duration is independent of exposure re-
gardless of the direction of the effect of the factor on the outcome, the prevalence rate ratio tends 
to underestimate the strength of the association between the exposure and the outcome (i.e., it 
biases the relative risk toward 1.0). The magnitude of this bias depends on both the prevalence 
rate ratio and the absolute magnitude of the point prevalence rates. When the point prevalence 
rate is higher in exposed than in unexposed individuals (prevalence rate ratio > 1.0), the point 
prevalence complement ratio [or (1.0 – Prev+)/(1– Prev–)] is less than 1.0. It is close to 1.0 when 
the point prevalence rates are low in both exposed and unexposed even if the prevalence rate ratio 
is relatively high. For example, if the prevalence of the disease in exposed subjects is 0.04 and in 
unexposed subjects 0.01, the prevalence rate ratio is high (0.04/0.01 = 4.0), but the bias resulting 
from the point prevalence complement ratio is merely 0.96/0.99 = 0.97 (i.e., still < 1.0 but close 
enough to 1.0 to result in a practically negligible bias). On the other hand, when the prevalence 
is relatively high in exposed individuals, the point prevalence complement ratio can be markedly 
less than 1.0, thus resulting in important bias. For example, if the prevalence of the disease in 
exposed subjects is 0.40 and in unexposed subjects 0.10, the prevalence rate ratio is the same as 
in the previous example (4.0); however, the point prevalence complement ratio is 0.6/0.90 = 0.67 
(i.e., the prevalence rate ratio underestimates the relative risk by 33%—even in the absence of 
duration ratio bias). The influence of the magnitude of prevalence is sometimes felt even for a 
low prevalence rate ratio. For example, if the point prevalence rates are 0.40 in exposed and 0.25 
in unexposed subjects, the prevalence rate ratio is fairly small (1.6), but the bias factor is 0.80 (i.e., 
the prevalence rate ratio underestimates the relative risk by at least 20%—and more if there is also 
duration ratio bias). Obviously, the bias will be greatest when both the prevalence rate ratio and the 
prevalence rate in one of the groups (exposed or unexposed) are high. For studies of factors that 
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decrease the prevalence of the disease (i.e., prevalence rate ratio < 1.0), the reciprocal reasoning 
applies; that is, (1.0 – Prev+)/(1 – Prev–) will be greater than 1.0, and the magnitude of the bias will 
also be affected by the absolute rates.

Examples of Incidence–Prevalence Biases. In the examples that follow, it is assumed that the 
incidence and duration according to the exposure have remained stable over time.

 ■ Gender and acute myocardial infarction in U.S. whites: White U.S. males have a much higher 
risk of myocardial infarction than white females. Some studies, however, have shown that, 
even after careful age adjustment, females have a shorter average survival than males.49 
Thus, the ratio (Durmales/Durfemales) tends to be greater than 1.0, and as a consequence, the 
prevalence rate ratio expressing the relationship of sex to myocardial infarction overestimates 
the relative risk.

 ■ Current smoking and emphysema: Smoking substantially increases the risk of emphysema. In 
addition, survival (and thus duration of the disease) in emphysema patients who continue to 
smoke after diagnosis is shorter than in those who quit smoking. As a result, prevalence rate 
ratios estimated in cross-sectional studies evaluating the association between current smoking 
and emphysema tend to underestimate the relative risk.

 ■ Tuberculin purified protein derivative (PPD) reaction and clinical tuberculosis: In assessments 
of the relationship between the size of the PPD skin test reaction and clinical tuberculosis, 
prevalence rate ratios were shown to underestimate relative risks in a population-based study 
carried out by G. Comstock et al. (unpublished observations) a few decades ago (FIGURE 4-5). 
This underestimation was likely due to the relatively high prevalence of clinical tuberculosis in 
this population at the time the study was carried out and thus to the occurrence of prevalence 
complement ratio bias.

FIGURE 4-5 Schematic representation of the results of the study by Comstock et al. (unpublished) evaluating the 
relationship of size of PPD reaction to clinical tuberculosis. After an initial cross-sectional survey conducted in 1946, the 
cohort was followed over time for determination of incidence rates.
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Data from GW Comstock et al., personal communication.
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Prevention of Incidence–Prevalence Bias. If the goal is to evaluate potential disease determinants, 
whenever possible, incident cases should be used to avoid incidence–prevalence bias. Incidence–
prevalence bias, although more easily conceptualized by comparing incidence with prevalence 
(cross-sectional) rate ratio data, may also occur in case-control studies when prevalent rather than 
only newly developed (incident) cases are used. For example, if smoking decreases survival after 
diagnosis, thereby decreasing the disease’s duration (as in myocardial infarction), a case-control 
study based on prevalent cases may include a higher proportion of nonsmoking cases (as smokers 
would have been selected out by death) than would a study based on incident cases, thus diluting 
the strength of the association (see Chapter 1, Figure 1-19).

Another problem in case-control studies is that newly diagnosed cases are used as proxies 
for newly developed cases. Thus, for diseases that may evolve subclinically for many years before 
diagnosis, such as chronic lymphocytic leukemia, diabetes, or renal insufficiency, presumed inci-
dent cases are, in fact, a mix of incident and prevalent cases, and incidence–prevalence bias may 
occur unbeknownst to the investigator. A cohort study efficiently prevents incidence–prevalence 
bias if its procedures include careful ascertainment and exclusion of all prevalent cases at baseline 
(clinical and subclinical) as well as a systematic and periodic search of newly developed clinical 
and subclinical outcomes.

Temporal Bias
In cross-sectional studies, the proper temporal sequence needed to establish causality, risk factor 
→ disease, cannot be firmly established. In other words, it is difficult to know which came first, the 
exposure to the potential risk factor or the disease. Temporal bias occurs when the inference about 
the proper temporal sequence of cause and effect is erroneous. For example, results from a prevalence 
survey may establish a statistical association between high serum creatinine levels and the occurrence 
of high blood pressure. Because the time sequence cannot be established, however, a cross-sectional 
association between these variables may mean either that high serum creatinine (a marker of kid-
ney failure) leads to hypertension or vice versa. A prospective study in which blood pressure levels 
are measured in persons with normal serum creatinine levels who are then followed over time for 
ascertainment of hypercreatininemia can obviously identify the proper temporal sequence and thus 
lend support to the conclusion that high blood pressure predicts incipient renal insufficiency.50

Temporal bias may also occur in case-control studies—even those including only newly devel-
oped (incident) cases—when the suspected exposure is measured after disease diagnosis in cases. 
For example, because hepatitis B virus (HBV) is myelotoxic, it has been suggested that HBV may 
be an etiologic factor for the so-called idiopathic aplastic anemia (AA).51 Temporal bias, however, 
could explain the relationship between HBV and AA in a case-control study if serum samples for 
determination of HBV antibody and antigen levels had been collected after AA onset, as individu-
als with AA may receive transfusions of blood contaminated with HBV even before a diagnosis is 
made. Thus, the erroneously inferred sequence is

HBV → AA,

but the true sequence is

undiagnosed AA → blood transfusion → diagnosed AA.

An example of the reasoning underlying the possibility of temporal bias is given by the asso-
ciation between estrogen replacement therapy (ERT) in postmenopausal women and endometrial 
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cancer.52 Although the causal nature of this association is currently well established, it was initially 
disputed on the grounds that a higher likelihood of using ERT resulted from symptoms occurring 
as a consequence of incipient, undiagnosed endometrial cancer.53 Thus, instead of the sequence

ERT → endometrial cancer,

the alternative sequence would be

undiagnosed endometrial cancer → symptoms → ERT → diagnosed endometrial cancer.

Another example of temporal bias is given by a cross-sectional study of Dutch children in 
which negative associations were found of pet ownership with allergy, respiratory symptoms, and 
asthma.54 As aptly postulated by the study’s investigators, these results may have resulted from the 
fact that families are likely to remove from the home (or not acquire) pets after such manifestations 
occur. This study also underscores why the term reverse causality is occasionally used in connection 
with a temporal bias of this sort.

A further example of this type of bias was suggested by Nieto et al.,55 who found that the 
relationship of current smoking to prevalent clinical atherosclerosis (defined by self-reported 
physician-diagnosed heart attack or cardiac surgery) was much stronger when using longitudinal 
data than when using cross-sectional data (in contrast to the association between smoking and 
subclinical atherosclerosis, which was of similar strength for the longitudinal and cross-sectional 
data). One possible explanation for these findings was that the occurrence of a heart attack (but not 
the presence of subclinical atherosclerosis) may lead to smoking cessation and thus to a dilution 
of the association when using prevalent cases.* Similarly, prevalent cases of clinical coronary heart 
disease, as part of their medical care, are more likely to be engaged in physical exercise than normal 
controls. This type of bias may occur even in prospective analyses when the outcome of interest 
is mortality. For example, the short-term mortality from lung cancer can be higher in individuals 
who stopped smoking recently than in current smokers because of the tendency of symptomatic 
individuals or those for whom a diagnosis has been made to quit smoking.56 Epidemiologists usually 
handle this bias by excluding from the analysis the deaths that occur within a specified period after 
the beginning of the study.

To prevent temporal bias in a cross-sectional survey, it is occasionally possible to improve the 
information on temporality when obtaining data through questionnaires. Temporality pertaining 
to potential risk factors, such as smoking, physical activity, and occupational exposures, can be as-
certained in cross-sectional samples by means of questions such as, “When were you first exposed 
to . . . ?” For some chronic diseases, such as angina pectoris, it is also possible to obtain information 
on the date of onset.

The investigators can then establish the temporal sequence between risk factor and disease, 
assuming, of course, that the information from surveyed individuals is accurate. (Obviously, 
even if temporality can be established in a cross-sectional study, the investigator will still have 
the incidence–prevalence bias to contend with.) When the date of the beginning of the expo-
sure is unknown, as in the example of viral hepatitis and aplastic anemia, the only solution is  
to use prospective data on exposure and outcome (a formidable challenge in the aplastic anemia 
example, given the rarity of this disease).

*Survival bias is, of course, another explanation, resulting from a poor prognosis of myocardial infarction in smokers.
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Finally, it may be possible to assess temporal bias occurring because the presumed exposure is a 
consequence of undiagnosed disease—as in the example of ERT and endometrial cancer mentioned 
previously in this chapter—by considering why the exposure occurred. In the study of Antunes 
et al.,52 for instance, data can be stratified according to indication for ERT use, such as bleeding; if 
temporal bias is not a likely explanation for the relationship of estrogen to endometrial cancer, the 
association will be observed for both individuals who were prescribed estrogens because they were 
bleeding and those who were given estrogens for other reasons (e.g., prevention of osteoporosis).

4.4.3 Biases Related to the Evaluation of Screening Interventions
Like any other epidemiologic studies, evaluation of screening interventions are also prone to biases, 
of which five types are particularly relevant: selection bias, incidence–prevalence bias, length bias, 
lead time bias, and overdiagnosis bias. (For a better understanding of these types of biases, the 
reader should review the concepts underlying the natural history of disease; see, e.g., Gordis.17)

Selection Bias
Selection bias stems from the fact that when the evaluation of screening relies on an observa-
tional design, the screened group may differ substantially from the nonscreened group. Thus, 
for example, persons who attend a screening program may be of a higher socioeconomic status 
than those who do not and may therefore have a better prognosis regardless of the effectiveness 
of the screening program. Prevention of this type of selection bias is best carried out by using an 
experimental design (i.e., by randomly assigning screening status to study participants). While 
improving internal validity, however, experimental studies to evaluate screening programs are 
typically conducted in selected populations, thus potentially limiting their external validity.

Incidence–Prevalence Bias, Length Bias
Also known as survival bias, incident–prevalence bias results from comparing prognosis in prevalent 
cases detected in the first screen, which is akin to a cross-sectional survey, with that in incident 
cases detected in subsequent screenings. This bias occurs because prevalent cases include long-term 
survivors who have a better average survival than that of incident cases in whom the full spectrum 
of severity is represented. This type of bias may occur in “pre–post” studies, for example, when 
comparing a screening strategy used in a screening exam (pre) that identifies prevalent cases with 
a different strategy in subsequent screens identifying incident cases (post).

A related bias is the so-called length bias, which occurs when a better prognosis for cases 
detected directly by the screening procedure (e.g., occult blood test for colorectal cancer) than for 
cases diagnosed between screening exams is used as evidence that the screening program is effective. 
To understand this type of bias, it is important to briefly review some key concepts related to the 
natural history of a disease and screening.

The effectiveness of screening is positively related to the length of the detectable preclinical 
phase (DPCP; see FIGURE 4-6 and, for definitions, TABLE 4-12), which in turn reflects the rate at 
which the disease progresses. This means that for diseases with a rapid progression, it is difficult, 
if not outright impossible, to improve prognosis by means of early detection. For example, a short 
average DPCP and its attending poor survival characterize most cases of lung cancer, for which 
screening generally is not effective. On the other hand, the long DPCP of in situ cervical cancer  
(or high-grade squamous intraepithelial lesions) explains why treatment after an abnormal Pap 
smear is related to a cure rate of virtually 100%.
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TABLE 4-12 Natural history of a disease: definitions of components represented in Figure 4-6.

Component
Represented in
Figure 4-6 as . . . Definition

Detectable preclinical 
phase

The interval between 
points B and E

Phase that starts when early diagnosis 
becomes possible and ends with the point 
in time when usual diagnosis based on 
symptomatic disease would have been 
made.

Critical points D1, D2, and D3 Points beyond which early detection 
and treatment are less and less effective 
vis-à-vis treatment following usual 
diagnosis. Treatment is totally ineffective 
after the last critical point (point D3 in the 
figure).

Lead time The interval between 
points C and E

Period between the point in time when 
early diagnosis was made and the point in 
time when the usual diagnosis (based on 
symptoms) would have been made.

Data from Gordis L. Epidemiology. 5th ed. Philadelphia, PA: Elsevier Saunders; 2014.17

FIGURE 4-6 Natural history of a disease.
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*Critical points

Detectable preclinical phase
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Lead time Survival after
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See Table 4-12 for definitions. 
Modified from Gordis L. Epidemiology. 5th ed. Philadelphia, PA: Elsevier Saunders; 2014.17



4.4 Combined Selection/Information Biases 161

Even for the same disease, regardless of screening, it can be shown that patients whose disease 
has a longer DPCP have a better prognosis than those whose disease has a shorter DPCP (e.g., post-
menopausal versus premenopausal breast cancer, respectively). For example, in the Health Insurance 
Plan Study of the effectiveness of screening for breast cancer, the so-called interval cases—that is, 
cases who were clinically diagnosed during the interval between the screening exams—had, on av-
erage, a higher case fatality rate than subclinical cases diagnosed as a result of the screening exam.57 
Although some of these cases may have been false negatives missed by the previous screening exam 
and therefore not true interval cases, many were probably characterized by rapidly growing tumors, 
that is, by a short DPCP (FIGURE 4-7). It follows that when evaluating a screening program, one 
must take into careful consideration the fact that cases detected by the screening procedure (e.g., 
mammography), which thus tend to have a longer DPCP, have an inherently better prognosis than 
the interval cases regardless of the effectiveness of screening. Failure to do so results in length bias, 
which occurs when a better prognosis for screening-detected than for interval cases is used as 
evidence that the screening program is effective when in reality it may be due to the longer DPCP 
of the former cases, reflecting a slower growing disease than that of interval cases.

Prevention of length bias can be accomplished by using an experimental approach and compar-
ing the prognosis of all cases—which include cases with both short and long DPCPs—occurring in 
individuals randomly assigned to a screening program with that of all cases occurring in randomly 
assigned controls who do not undergo the screening exams. (The distribution of patients with 
long DPCPs versus those with short DPCPs is expected to be the same in the randomly assigned 
screening and control groups.)

FIGURE 4-7 Schematic representation of the length of the detectable preclinical phase (DPCP) in cases occurring 
during a screening program. Cases with a longer DPCP (cases 1, 3, and 8) have a higher probability of identification at 
each screening exam. Cases with a shorter DPCP occurring between screening exams are the interval cases (cases 2, 4, 6, 
and 7). Case 5 is a false negative (missed by the first exam).
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Lead Time Bias
Lead time is the time by which diagnosis can be advanced by screening. It is the time between early 
diagnosis (Figure 4-6, point C) and the usual time when diagnosis would have been made if an early 
diagnostic test(s) had not been applied to the patient (Figure 4-6, point E; see also Table 4-12). The 
lead time, therefore, is contained within the DPCP.

When evaluating effectiveness of screening, lead time bias occurs when survival (or recurrence-free 
time) is counted from the point in time when early diagnosis was made. Thus, even if screening 
is ineffective, the early diagnosis adds lead time to the survival counted from the time of usual 
diagnosis. Survival may then be increased from time of early diagnosis but not from the biological 
onset of the disease (FIGURE 4-8).58

Lead time bias occurs only when estimating survival (or time-to-event) from time of diagnosis. 
Thus, lead time bias can be avoided by calculating the mortality risk or rate among all screened and 
control subjects rather than the cumulative probability of survival (or its complement, the cumula-
tive case fatality probability) from diagnosis among cases.17 If survival from diagnosis is chosen as 
the strategy to describe the results of the evaluation of a screening approach, the average duration 
of lead time must be estimated and taken into account when comparing survival after diagnosis 
between screened and nonscreened groups. For survival to be regarded as increased from the bio-
logical onset, it must be greater than the survival after usual diagnosis plus lead time (FIGURE 4-9). 
It is, thus, important to estimate average lead time.

If the disease for a given individual is identified through screening, it is impossible to know when 
“usual” diagnosis would have been made if screening had not been carried out. Thus, it is not possible 
to estimate the lead time for individual patients, only an average lead time. What follows is a simplified 
description of the basic approach used to estimate average lead time. A more detailed account of lead 
time estimation is beyond the scope of this intermediate methods text and can be found elsewhere.58

FIGURE 4-8 Schematic representation of lead time bias: In spite of the early diagnosis by screening, survival of patient 
A is the same as survival of patient B, whose disease was diagnosed because of clinical symptoms, because survival 
(A) = (1) lead time + (2) survival (B).
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Modified from Gordis L. Epidemiology. 5th ed. Philadelphia, PA: Elsevier Saunders; 2014.17
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As mentioned previously, the lead time is a component of the DPCP. Thus, to estimate the 
average lead time, it is first necessary to estimate the average duration of the DPCP (DurDPCP) using 
the known relationship between prevalence (PrevDPCP) and incidence (IncDPCP) of preclinical cases, 
that is, cases in the DPCP (see also Chapter 2, Section 2.3, Equation 2.4):

Prev Inc Dur PrevDPCP DPCP DPCP DPCP= × × −( . )1 0

The duration of the DPCP can then be easily derived as

Dur Prev
Inc PrevDPCP

DPCP

DPCP DPCP
=

× −( . )1 0

If the prevalence of the disease is not too high (e.g., no greater than about 5%), 1.0 – PrevDPCP will 
be close to 1.0, and thus, this equation can be simplified as follows:

Dur Prev
IncDPCP

DPCP

DPCP
≈

To apply this formula, the PrevDPCP is estimated using data from the first screening exam of 
the target population, which is equivalent to a cross-sectional survey. The IncDPCP can be estimated 
in successive screening exams among screenees found to be disease free at the time of the first 
screening. An alternative way to estimate IncDPCP, and one that does not require follow-up with 
the screenees, is to use the incidence of clinical disease in the reference population if available. 

FIGURE 4-9 Schematic representation of lead time bias: Survival of patient A from early diagnosis is better than 
survival of patient B because survival (A) > (1) lead time + (2) survival (B).
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FIGURE 4-10 Estimation of lead time as a function of the variability of the sensitivity of the screening exam during the 
detectable preclinical phase (DPCP).

A. Sensitivity of screening exam is same 
throughout the DPCP: average lead time = 1/2 DPCP

B. Sensitivity of screening exam increases 
during the DPCP as a result of the progression of 
the disease: average lead time < 1/2 DPCP

DPCP Clinical phase

DPCP Clinical phase

The rationale for this procedure, and an important assumption justifying screening, is that, if left 
untreated, preclinical cases would necessarily become clinical cases; thus, there should not be a 
difference between the incidence of clinical and preclinical disease. When using available clinical 
disease incidence (e.g., based on cancer registry data), however, it is important to adjust for differences 
in risk factor prevalence, expected to be higher in screenees than in the reference population from 
which clinical incidence is obtained. Thus, for example, a family history of breast cancer is likely to 
be more prevalent in individuals screened for breast cancer than in the female population at large.

Next, using the duration of the DPCP estimate, the estimation of the average lead time needs 
to take into account whether early diagnosis by screening is made at the first screening exam or in 
subsequent screening exams.

The estimation of the lead time of point prevalent preclinical cases detected at the first screening 
exam relies on certain assumptions regarding the distribution of times of early diagnosis during the 
DPCP. For example, if the distribution of early diagnosis by screening can be assumed to be homogeneous 
throughout the DPCP—that is, if the sensitivity of the screening test is independent of time within the 
DPCP (FIGURE 4-10A)—the lead time of point prevalent preclinical cases can be simply estimated as

Lead time DPCP=
2

The latter assumption, however, may not be justified in many situations. For most diseases 
amenable to screening (e.g., breast cancer), the sensitivity of the screening test, and thus the prob-
ability of early diagnosis, is likely to increase during the DPCP (FIGURE 4-10B) as a result of the 
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progression of the disease as it gets closer to its symptomatic (clinical) phase. If this is the case, 
a more reasonable assumption would be that the average lead time is less than one-half of the  
DPCP. Obviously, the longer the DPCP, the longer the lead time under any distributional assump-
tion. Also, because the DPCP and thus the average lead time are dependent on the validity of the 
screening exam, they become longer as more sensitive screening tests are developed.

The duration of the lead time for incident preclinical cases identified in a program in which 
repeated screening exams are carried out is a function of how often the screenings are done (i.e., 
the length of the interval between successive screenings). The closer in time the screening exams 
are, the greater the probability that early diagnosis will occur closer to the onset of the DPCP, and 
thus, the more the lead time will approximate the DPCP.

FIGURE 4-11 schematically illustrates short and long between-screening intervals and their ef-
fects on the lead time, assuming that the sensitivity of the test does not vary throughout the DPCP. 
Considering, for example, two persons with similar DPCPs whose diseases start soon after the 
previous screening, the person with the shorter between-screening interval (a to b, patient A) has 
his or her newly developed preclinical disease diagnosed nearer the beginning of the DPCP than 
the person with the longer between-screening interval (a to c, patient B). Thus, the duration of the 

FIGURE 4-11 Relationship between frequency of screening and duration of lead time. Horizontal lines represent 
duration of the detectable preclinical phase (DPCP). In patient A, the second screening exam is carried out soon after 
the first screening exam: lead time ≈ DPCP. In patient B, the between-screening interval is longer: lead time ≈ 
(1/2) × DPCP.
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lead time is closer to the duration of the DPCP for patient A than for patient B. The maximum lead 
time obviously cannot be longer than the DPCP.59

Overdiagnosis Bias
Overdiagnosis bias occurs when screening identifies patients whose early subclinical disease does 
not evolve to more advanced stages and the analysis is based on survival of patients. Consider, for 
example, the natural history of prostate cancer: It has been estimated that as many as one-third of 
men younger than 70 years and between two-thirds to 100% of older men may have prostate cancer 
but often in a microscopic, noninvasive form (see TABLE 4-13).60 In the Surveillance, Epidemiology, 
and End Results (SEER) Program of the National Cancer Institute, the number of cases of prostate 
cancer per year was estimated at close to 221,000 from 1975 through 2011, but only 27,540 deaths  
(≈ 12.5%) occurred in the same period.61 Thus, it is likely that many individuals—particularly 
as they age—die with prostate cancer rather than from prostate cancer. Because it is not currently 
possible to identify cases that would not evolve to more invasive stages leading to death, if they 
represent a relative high proportion of all cases, analysis of survival after diagnosis would favor the 
diagnosis made by screening, which would include many such cases.*

There have been two recent trials of screening for prostate cancer with prostate-specific an-
tigen (PSA): one in the United States and the other in Europe. In the United States-based trial,62 

*Note that the efficiency of PSA screening would be diluted by overdiagnosis (i.e., by the inclusion of noninvasive cases). 
For example, if in a hypothetical population of 10,000, there were 2000 potentially lethal cases, without screening, 
they would all die. With screening and assuming that the effectiveness of the treatment is very high (e.g., 97.5%), only 
50 deaths would occur. If the potentially lethal cases could be identified and screened, the number needed to screen to 
prevent 1 death would be 40 (i.e., 2000/50). On the other hand, if these potentially lethal cases could not be identified, the 
whole target population would have to be screened, and the number needed to screen to prevent 1 death would be 200 
(i.e., 10,000/50). Thus, screening of only the potentially “lethal” subgroup (those who would have died without screening) 
would be much more efficient than screening the whole target population.

TABLE 4-13 Range of prevalence rates of prostate cancer by age.

Age (years) Prevalence ranges of prostate cancer (%)

50–59 10–42%

60–69 17–38%

70–79 25–66%

$ 80 18–100%

Data from Franks LM. Latent carcinoma of the prostate. J Pathol Bacteriol. 1954;68:603-61665; Bostwick DG, Cooner WH, Denis L, Jones GW, Scardino PT, 
Murphy GP. The association of benign prostatic hyperplasia and cancer of the prostate. Cancer. 1992;70:291-30166; Breslow, Chan CW, Dhom G, et al. Latent 
carcinoma of prostate at autopsy in seven areas. Int J Cancer. 1977;20:680-68867; Baron E, Angrist A. Incidence of occult adenocarcinoma of the prostate  
after fifty years of age. Arch Pathol. 1941;32:787-79368; Edwards CN, Steinthorsson E, Nicholson D. An autopsy study of latent prostatic cancer. Cancer.  
1953;6:531-55469; Halpert B, Schmalhorst WR. Carcinoma of the prostate in patients 70 to 79 years old. Cancer. 1966;695-69870; Scott R, Mutchnik DL, 
Laskowski TZ, Schmalhorst WR. Carcinoma of the prostate in elderly men: incidence, growth characteristics and clinical significance. J Urol. 
1969;101:602-607.71
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the cumulative hazards of death for individuals tested with PSA and for the control group were 
virtually the same for most of the follow-up and at the end of the trial. In the European trial, a sig-
nificant difference in mortality could not initially be found between the screened and nonscreened 
groups.63 However, upon further follow-up, cumulative mortality was significantly reduced in the 
PSA group.64 In the two trials, however, by evaluating mortality for all individuals (and not just 
for those with a diagnosis of prostate cancer), overdiagnosis bias was avoided, as, in each trial, the 
distributions of noninvasive and invasive cases were the same or very similar in the two fairly large 
randomly allocated samples.

Unfortunately, it is currently impossible to identify patients with prostate cancer who, if left 
unscreened, would die. A similar problem may exist with regard to in situ breast cancer.72 This 
problem suggests expanding the definition of a false-positive test to also include individuals with 
cancer who do not progress to an invasive, potentially lethal phase.

4.4.4 Additional Types of Bias
In addition to the biases extensively discussed previously in this chapter, the “natural history” of a 
study provides an appropriate framework to understand other types of bias. More specifically, different 
types of bias are related to different phases in the natural history of a study (FIGURE 4-12). In addition 
to selection and information, the epidemiologist should be concerned with the plausibility of his 
or her hypothesis or hypotheses and with the analysis, interpretation, and dissemination of study 
results. Plausibility bias occurs when the hypothesis lacks biological, sociological, or psychological 

FIGURE 4-12 Natural history of a study and corresponding biases.
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plausibility, for example, when postulating that chewing gum causes kidney cancer. An example 
of analytic bias is the use of a single analytic unit (e.g., 1 standard deviation) when the function is 
not linear (see Chapter 9, Section 9.3.4). Inferential bias may occur when causality is inferred from 
results of a single observational study.*    73 Publication bias, which has been mentioned previously, is  
discussed in Chapter 10, Section 10.5.
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Precision and Study Size

Kenneth J. Rothman, and Timothy L. Lash
 
We use the term accuracy to describe an estimate of an epidemiologic
measure that is close to the estimand. Two types of error, systematic
and random, detract from accuracy. In earlier chapters, we have
considered sources of systematic error, including biases related to
selection of study participants, measurement errors of study
variables, and confounding. In this chapter, we discuss methods to
measure, limit, and account for random error in an epidemiologic
study and how to interpret these methods properly.



RANDOM ERROR AND STATISTICAL
PRECISION
What is random error? It is often equated with chance or random
variation, which itself is rarely well defined. Many people believe
that chance plays a fundamental role in all physical and, by
implication, biologic phenomena. For some, the belief in chance is so
dominant that it vaults random occurrences into an important role as
component causes of all we experience. Others believe that causality
may be viewed as deterministic, meaning that a full elaboration of
the relevant factors in a set of circumstances will lead, on sufficient
analysis, to a perfect prediction of effects resulting from these causes.
Under the la�er view, all experience is predestined to unravel in a
theoretically predictable way that follows from the previous pa�ern
of actions. Even with this extreme deterministic view, however, one
must face the fact that only rarely could one acquire sufficient
knowledge to predict effects perfectly, and then only for trivial
cause-effect pa�erns. The resulting incomplete predictability of
determined outcomes makes their residual variability
indistinguishable from random occurrences.

A unifying description of incomplete predictability can thus be
forged. In this description, random variation equates with a
component of ignorance about causes of study outcomes, an
ignorance that is inevitable whether the outcome is deterministic or
is partly random. For example, predicting the outcome of a tossed
coin represents a physical problem, the solution of which is feasible
through the application of physical laws. Whether the sources of
variation that we cannot explain are actually chance phenomena
makes li�le difference. We treat such variation as being random until
we can explain it, and thereby reduce it, by relating it to known
factors.

In an epidemiologic study, random variation has many sources,
but a major contributor is the process of selecting the specific study
participants. This process is usually referred to as sampling; the



a�endant random variation is known as sampling variation or
sampling error. Case-control studies sometimes involve a physical
sampling process, whereas cohort studies often do not. Nevertheless,
it is a standard practice to treat all epidemiologic studies, including
cohort studies, as having sampling error. In this view, the subjects in
a study, whether physically sampled or not, constitute a figurative
sample of possible people who could have been included in the
study or of the different possible experiences the study subjects
could have had. Even if all the individuals in a population were
included in a study, the study subjects are viewed as a sample of the
potential biologic experience of an even broader conceptual
population. Under this view, the statistical dictum that there is no
sampling error if an entire population (as opposed to a sample of it)
is studied does not apply to epidemiologic studies, even if an entire
population is included in the study. Conceptually, the actual subjects
are always considered a sample of a broader experience of interest—
although they seldom actually satisfy the definition of a random
sample that underpins the statistical models ordinarily used to
measure random variation.1, 2

Sampling is only one source of random error that contributes to
unpredictable inaccuracies in epidemiologic studies. Another source
is the unexplained variation in occurrence measures, such as
observed incidence rates or prevalence proportions. Sources of
systematic errors also abound. For example, when exposure status is
not randomly assigned, confounding (see Chapter 12) may lead to
deviations of estimated associations from target effects that far
exceed what standard statistical models assume probable.
Mismeasurement of key study variables also contributes to the
overall inaccuracy, in both random and systematic ways. As a result
of these extra sources of variation, and because of the weak
theoretical underpinnings for conceptualizing study subjects as a
sample of a broader experience, the usual statistical tools that we use
to measure random variation at best provide minimum estimates of
the actual uncertainty we should have about the estimand. One



elementary way to improve the quantification of our uncertainty is
through bias analysis, which we discuss in Chapter 27.

A common measure of random variation in a measurement or
estimation process is the variance of the process. The statistical
precision of (or statistical information in) a measurement or process is
often taken to be the inverse of the variance of the measurements or
estimates that the process produces. In this sense, precision is the
opposite of random error. Precision of estimation can be improved
(which is to say, variance can be reduced) by increasing the size of
the study. Precision can also be improved by modifying the design
of the study to decrease the variance, given a fixed total number of
subjects; this process is called improving the statistical efficiency of the
study. Perhaps, the most common epidemiologic example of such
design improvement is the use of a case-control study rather than a
cohort study, because for a fixed study size, the variance of an effect
estimate is heavily dependent on the proportion of subjects in the
study that are cases, and case-control studies increase this
proportion by design.



APPROACHES TO EVALUATING RANDOM
ERROR
Statistics and its role in data analysis have undergone a gradual but
profound transformation in recent times. There is an essential
distinction between a qualitative study objective (to answer a
question “yes” or “no”) and a quantitative one (to measure
something). The recent transformation reflects a growing preference
for the la�er objective and for statistical methods consistent with it.
Until the 1970s, most applications of statistics in epidemiology
focused on deciding whether “chance” or “random error” could be
solely responsible for an observed association, or equivalently,
whether exposure x was related to outcome y. The methods used for
this decision were those of classical significance testing, predominant
in British applications, and those of Neyman-Pearson hypothesis
testing, predominant in American applications.3, 4 Because of their
similarities, the term significance testing is often applied to both
collections of methods.

These testing applications, which were subject to some early
criticism,5-8 came under growing criticism by epidemiologists and
statisticians during the late 20th century, which intensified in the
2010s.9-12 The critics pointed out that most, if not all, epidemiologic
applications need more than a decision as to whether chance alone
could have produced an association. More important is the
estimation of the magnitude of the association, including an
assessment of the precision of the estimation method. The estimation
tool used by most authors is the confidence interval, which provides
a range of values for the association, under the hypothesis that only
random variation has created discrepancies between the true value
of the association under study and the value observed in the data.13

Other authors, while favoring the move toward interval estimation,
point out that confidence intervals suffer from some of the flaws
associated with significance testing and favor other approaches to
interval estimation.14-17



Significance Testing and Hypothesis Testing
Nearly 70 years ago, Berkson6 wrote:

It is hardly an exaggeration to say that statistics, as it is
taught at present in the dominant school, consists almost
entirely of tests of significance, though not always presented
as such, some comparatively simple and forthright, others
elaborate and abstruse.

The ubiquitous use of P-values and references to “statistically
significant” findings in the current medical literature demonstrates
the dominant role that statistical hypothesis testing still plays in data
analysis in some branches of biomedical sciences. Many researchers
still believe that it would be fruitless to submit for publication any
paper that lacks statistical tests of significance. Until recently, their
belief was not entirely ill-founded, because many journal editors and
referees relied on tests of significance as indicators of sophisticated
and meaningful statistical analysis as well as the primary means of
assessing sampling variability in a study.18 Statistical significance is
usually based on the P-value (described below): results are
considered “significant” or “not significant” according to whether
the P-value is less than or greater than an arbitrary cutoff value,
usually 0.05, which is called the alpha level of the test.

The preoccupation with significance testing derives from the
research interests of the statisticians who pioneered the development
of statistical theory in the early 20th century. Their research
problems were primarily industrial and agricultural, and they
typically involved randomized experiments or random-sample
surveys that formed the basis for a choice between two or more
alternative courses of action. Such studies were designed to produce
results that would enable a decision to be made, and the statistical
methods employed were intended to facilitate decision-making. The
concepts that grew out of this heritage are today applied in clinical



and epidemiologic research, and they strongly reflect this
background of decision-making.

Statistical significance testing of associations usually focuses on
the null hypothesis, which is usually formulated as a hypothesis of no
association between two variables in a superpopulation, the
population from which the observed study groups were purportedly
sampled in a random fashion. For example, one may test the
hypothesis that the risk difference (RD) in the superpopulation is 0
or, equivalently, that the risk ratio (RR) is 1. Note that this
hypothesis is about the superpopulation, not about the observed
study groups. Testing may alternatively focus on any other specific
hypothesis, e.g., that the RD is 0.1 or the RR is 2. For non-null
hypotheses, tests about one measure (e.g., RD) are not usually
equivalent to tests about another measure (e.g., an RR), so one must
choose a measure of interest to perform a non-null test.

A common misinterpretation of significance tests10 is to claim that
there is no difference between two observed groups because the null
test is not statistically significant, in that P is greater than the cutoff
for declaring statistical significance (again, usually .05). This
interpretation confuses a descriptive issue (whether the two
observed groups differ) with an inference about the
superpopulation. The significance test refers only to the
superpopulation, not the observed groups. To say that the difference
is not statistically significant means only that one cannot reject the
null hypothesis that the superpopulation groups are the same; it
does not imply that the two observed groups are the same.

One needs only to look at the two observed groups to see whether
they are different. Significance testing concerns instead whether the
observed difference should lead one to infer that there is a difference
between the corresponding groups in the superpopulation.
Furthermore, even if the observed difference is not statistically
significant, the superpopulation groups may be different (i.e., the
result does not imply that the null is correct). Rather, the
nonsignificant observed difference means only that one should not



rule out the null hypothesis if one accepts the statistical model used
to construct the test.

Conversely, it is a misinterpretation to claim that an association
exists in the superpopulation because the observed difference is
statistically significant. First, the test may be significant only because
the model used to compute it is wrong (e.g., there may be many
sources of uncontrolled bias). Second, the test may be significant
because of chance alone; for example, even under perfect conditions,
a test using a 0.05 alpha level will yield a statistically significant
difference 5% of the time if the null hypothesis is correct.

As we emphasize, the alpha cutoff point is an arbitrary and
questionable convention; it can be dispensed simply by reporting the
actual P-value from the test, which we now discuss in detail. We will
then further explore and criticize the theory that led to the
widespread use of arbitrary testing cutoffs in research.

P-Values
P-values come in two types: one-tailed and two-tailed. Further, there
are two types of one-tailed P-values: upper and lower. An upper one-
tailed P-value is the probability that a corresponding quantity
computed from the data, known as the test statistic (such as a t-
statistic or a chi-square statistic), will be greater than or equal to its
observed value, assuming that (a) the test hypothesis is correct and
(b) there is no source of bias in the data collection or analysis
processes. Similarly, a lower one-tailed P-value is the probability that
the corresponding test statistic will be less than or equal to its
observed value, again assuming that (a) the test hypothesis is correct
and (b) there is no source of bias in the data collection or analysis
processes (sometimes described by saying that the underlying
statistical model is correct). The two-tailed P-value is usually defined
as twice the smaller of the upper and lower P-values, although more
complicated definitions have been used. Being a probability, a one-
tailed P-value must fall between 0 and 1; the two-tailed P-value as
just defined, however, may exceed 1. The following comments apply
to all types of P-values. Some authors refer to P-values as “levels of



significance,”19 but the la�er term is best avoided because it has been
used by other authors to refer to alpha levels.

In the classical significance testing paradigm, small P-values are
supposed to indicate that at least one of the assumptions used to
derive it is incorrect, that is, either or both the test hypothesis
(assumption a) or the statistical model (assumption b) is incorrect.
All too often, the statistical model is taken as given, so that a small P-
value is taken as indicating a low degree of compatibility between
the test hypothesis and the observed data. This incompatibility
derives from the fact that a small P-value represents a low
probability of ge�ing a test statistic as extreme as or more extreme
than the observed statistic if the test hypothesis is true and no bias is
operative. Small P-values, therefore, are supposed to indicate that
the test hypothesis is not an acceptable explanation for the
association observed in the data. This common interpretation has
been extensively criticized because it does not account for alternative
explanations and their acceptability (or lack thereof); for example,
refer to the study of Berkson6 and later epidemiologic criticisms by
Goodman and Royall,15 Greenland,1 Goodman,4 and Gigerenzer.3 A
less hypothetical and more cautious interpretation is then that a
small P-value indicates that there is a problem with the test
hypothesis or with the study, or with both.20

A common but naive misinterpretation of P-values is that they
represent probabilities of test hypotheses. In many situations, one
can compute a Bayesian probability, or credibility for the test
hypothesis, but it will almost always be far from the two-tailed P-
value.21, 22 A one-tailed P-value can be used to put a lower bound on
the Bayesian probability of certain compound hypotheses,23 and
under certain conditions, it will approximate the Bayesian
probability that the true association is the opposite of the direction
observed.24 Nonetheless, a P-value for a simple test hypothesis (for
example, exposure and disease are unassociated) is not a probability
of that hypothesis. That P-value is usually much smaller than such a
Bayesian probability and so can easily mislead one into
inappropriately rejecting the test hypothesis.15, 22
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Another incorrect interpretation is that the P-value is the

probability of the observed data under the test hypothesis. This
probability is known as the likelihood of the test hypothesis, see
Goodman and Royall,15 Royall,17 Edwards,25 and the following
discussion. The likelihood of a hypothesis is usually much smaller
than the P-value for the hypothesis, because the P-value includes not
only the probability of the observed data under the test hypothesis,
but also the probabilities for all other possible data configurations in
which the test statistic was more extreme than that observed.

A subtle and common misinterpretation of a P-value for testing
the null hypothesis is that it represents the probability that the data
would show as strong an association as observed or stronger if the
null hypothesis were correct. This misinterpretation can be found in
many methodologic articles and textbooks. The nature of the
misinterpretation can be seen in a study of a risk difference (RD).
The study might produce an estimate of RD of 0.33 with an
estimated standard error (or standard deviation) of 0.20, which
would produce a standard normal test statistic of z = 0.33/0.20 = 1.65
and a two-tailed P = 0.10. The same study, however, might have
instead estimated an RD of 0.30 and a standard deviation of 0.15,
which would produce a standard normal test statistic of
z = 0.30/0.15 = 2.00 and P = 0.05. The result with the association
nearer the null would then produce a smaller P-value. The point is
that the P-value refers to the size of the test statistic (which in this
case is the estimate divided by its estimated standard deviation), not
to the strength or size of the estimated association.

It is crucial to remember that P-values are calculated from
statistical models, which are assumptions about the form of study-
to-study data variation. Every P-value, even “nonparametric” and
“exact” P-values, depends on a statistical model; it is only the
strength of the model assumptions that differs.26, 27 A major problem
with the P-values and tests in common use (including all commercial
software) is that the assumed models make no allowance for sources
of bias, apart from confounding by controlled covariates.



Neyman-Pearson Hypothesis Tests
A P-value is a continuous measure of the compatibility between a
hypothesis and data. Although its utility as such a measure can be
disputed,15, 17 a worse problem is that it is often used to force a
qualitative decision about rejection of a hypothesis. As introduced
earlier, a fixed cutoff point or alpha level, often denoted by the Greek
le�er α (alpha), is selected as a criterion with which the P-value is
judged. This point is then used to classify the observation either as
“significant at level α” if P ≤ α, in which case the test hypothesis is
rejected, or “not significant at level α” if P > α, in which case the test
hypothesis is accepted (or, at least, not rejected).

The use of a fixed cutoff α is a hallmark of the Neyman-Pearson
form of statistical hypothesis testing. Both the alpha level28 and the
P-value4, 29 have been called the “significance level” of the test. This
usage has led to misinterpretation of the P-value as the alpha level of
a statistical hypothesis test. To avoid the error, one should recall that
the P-value is a quantity computed from the data, whereas the alpha
level is a fixed cutoff (usually 0.05) that can be specified without
even seeing the data. (As a technical aside, Neyman and Pearson
actually avoided use of P-values in their formulation of hypothesis
tests and instead defined their tests based on whether the value of
the test statistic fell within a “rejection region” for the test.)

An incorrect rejection is called a Type I error, or alpha error. A
hypothesis testing procedure is said to be valid if, whenever the test
hypothesis is true, the probability of rejection (i.e., the probability
that P ≤ α) does not exceed the alpha level (provided there is no bias
and all test assumptions are satisfied). For example, a valid test with
α = 0.01 (a 1% alpha level) will lead to a Type I error with no more
than 1% probability, provided there is no bias or incorrect
assumption.

If the test hypothesis is false but is not rejected, the incorrect
decision not to reject is called a Type II, or beta error. If the test
hypothesis is false, so that rejection is the correct decision, the
probability (over repetitions of the study) that the test hypothesis is
rejected is called the power of the test. The probability of a Type II



error is related to the power by the equation Pr (Type II
error) = 1 − power.

There is a trade-off between the probabilities of a Type I and a
Type II error. This trade-off depends on the chosen alpha level.
Reducing the Type I error when the test hypothesis is true requires a
smaller alpha level, for with a smaller alpha level a smaller P-value
will be required to reject the test hypothesis. Unfortunately, a lower
alpha level increases the probability of a Type II error if the test
hypothesis is false. Conversely, increasing the alpha level reduces
the probability of Type II error when the test hypothesis is false, but
increases the probability of Type I error if it is true.

The concepts of alpha level, Type I error, Type II error, and power
stem from a paradigm in which data are used to decide whether to
reject the test hypothesis, and therefore follow from a qualitative
study objective. The extent to which decision-making dominates
research thinking is reflected in the frequency with which the P-
value, a continuous measure, is reported or interpreted only as an
inequality (such as P < 0.05 or P > 0.05) or else not at all, with the
evaluation focusing instead on “statistical significance” or its
absence.

When a single study forms the sole basis for a choice between two
alternative actions, as in industrial quality-control activities, a
decision-making mode of analysis may be justifiable. Even then,
however, a rational recommendation about which of two actions is
preferable will require consideration of the costs and benefits of each
action. These considerations are rarely incorporated into statistical
tests. In most scientific and public health se�ings, it is presumptuous
if not absurd for an investigator to act as if the results of his or her
study will form the sole basis for a decision. Such decisions are
inevitably based on results from a collection of studies, and proper
combination of the information from the studies requires more than
just a classification of each study into “significant” or “not
significant”. Thus, degradation of information about an effect into a
simple dichotomy is counterproductive, even for decision-making,
and can be misleading.



In a classic review of 71 clinical trials that reported no
“significant” difference between the compared treatments, Freiman
et al.30 found that in the great majority of such trials, the data either
indicated or at least were consistent with a moderate or even
reasonably strong effect of the new treatment (Figure 15-1). In all of
these trials, the original investigators interpreted their data as
indicative of no effect because the P-value for the null hypothesis
was not “statistically significant.” The misinterpretations arose
because the investigators relied solely on hypothesis testing for their
statistical analysis rather than on estimation. On failing to reject the
null hypothesis, the investigators in these 71 trials inappropriately
accepted the null hypothesis as correct, which probably resulted in
Type II error for many of these so-called negative studies.



Figure 15.1 Ninety percent confidence limits for the true
percentage difference for the 71 trials. The vertical bar at the

center of each interval indicates the observed difference, PC-PT,
for each trial. (Reproduced with permission from Freiman JA,

Chalmers TC, Smith H, et al. The importance of beta, the type II
error and sample size in the design and interpretation of the

randomized control trial. Survey of 71 “negative” trials. N Engl J
Med. 1978;299:690-694.)

Type II errors result when the magnitude of an effect, biases, and
random variability combine to give results that are insufficiently
inconsistent with the null hypothesis to reject it. This failure to reject
the null hypothesis can occur because the effect is small, the
observations are too few, or both, as well as from biases. More to the
point, however, is that Type I and Type II errors arise because the



investigator has a�empted to dichotomize the results of a study into
the categories “significant” or “not significant.” Because this
degradation of the study information is unnecessary, an “error” that
results from an incorrect classification of the study result is also
unnecessary.

Why has such an unsound practice as Neyman-Pearson
(dichotomous) hypothesis testing become so ingrained in scientific
research? Undoubtedly, much of the popularity of hypothesis testing
stems from the apparent objectivity and definitiveness of the
pronouncement of significance.31 Declarations of significance or its
absence can supplant the need for more refined interpretations of
data; the declarations can serve as a mechanical substitute for
thought, promulgated by the inertia of training and common
practice. The neatness of an apparent clear-cut result may appear
more gratifying to investigators, editors, and readers than a finding
that cannot be immediately pigeonholed.

The unbridled authority given to statistical significance in the
social sciences has also been a�ributed to the apparent objectivity
that the pronouncement of significance can convey32:

“Let us look and see what is significant” is not too far from
the approach of some researchers, and when the data involve
perhaps several hundred variables, the practical temptations
to use a ready-made decision rule are enormous. . . . [T]he
pressure to decide, in situations where the very use of
probability models admits the uncertainty of the inference,
has certain consequences for the presentation of knowledge.
The significance test appears to guarantee the objectivity of
the researcher’s conclusions, and may even be presented as
providing crucial support for the whole theory in which the
research hypothesis was put forward. As we have seen, tests
of significance cannot do either of these things—but it is not
in the interests of anyone involved to admit this too openly.



The origin of the nearly universal acceptance of the 5% cutoff
point for significant findings is tied to the abridged form in which
the chi-square table was originally published.27 Before computers
and calculators could easily give quick approximations to the chi-
square distribution, tables were used routinely. Because there is a
different chi-square distribution corresponding to every possible
value for the degrees of freedom, the tables could not give many
points for any one distribution. The tables typically included values
at 1%, 5%, and a few other levels, encouraging the practice of
checking the chi-square statistic calculated from one’s data to see if it
exceeded the cutoff levels in the table. In the original formulation of
the Neyman and Pearson hypothesis testing, the alpha level was
supposed to be determined from contextual considerations,
especially the cost of Type I and Type II errors. This more thoughtful
aspect of their theory was rapidly lost when the theory entered
common scientific use. In fact, the default values assigned to
acceptable Type I and Type II errors often run contrary to public
health values. Imagine, for example, a study of the effect of a
pollution source on the health of a nearby community, designed
with acceptable Type I error rate of α = 0.05 and with acceptable
Type II error rate of β = 0.2 (80% power). These imply that a Type II
error is four times worse than a Type I error. Limiting the Type I
error protects the polluter by keeping low the probability of a false-
positive result, which would be to declare that it is harmful to the
community when it is not. Limiting the Type II error protects the
community by keeping low the probability of a false-negative result,
declaring no harm when in fact there is harm. Se�ing a Type II error
to be 0.20, four times greater than the Type I error of 0.05, suggests
that protecting the pollution source is worth four times as much as
protecting the community. It would be a valuable exercise for
investigators to write out statements such as these at the design
stage to clarify whether they comport with their personal and
professional values.

The Alternative Hypothesis



Another hallmark of Neyman-Pearson hypothesis testing, and
perhaps one that most distinguishes it from earlier significance-
testing paradigms, is that if the test hypothesis is rejected, it is
supposed to be rejected in favor of some alternative hypothesis. The
alternative hypothesis may be very specific, but more often it is
implicit and very broad. For example, if the test hypothesis
postulates that there is no association, then the usual (implicit)
alternative hypothesis is that there is an association. Such
nonspecific alternatives lead to nondirectional tests based on
comparing a two-tailed P-value from a directional test statistic
against the alpha level. Because this P-value is sensitive to violations
of the test hypothesis in either direction, it is often called a two-sided
P-value.

Nonetheless, the test and alternative hypotheses can instead be
one-sided (directional). For example, the test hypothesis could state
that an association is not positive (that is, either null or negative).
The alternative is then that the association is positive. Such an
alternative leads to use of a one-sided test based on comparing an
upper-tailed P-value from a directional test statistic against alpha.
Because this one-tailed P-value is sensitive to violations of the test
hypothesis in only one direction, it is often called a one-sided P-value.
An analogous one-sided test that the association was not negative
would employ the lower-tailed P-value; the alternative for this test is
that the association is negative.

Another form of the alternative hypothesis is a finite interval of
“equivalence” about the null, for example, that the RD is between
−0.1 and +0.1. This alternative is found in comparisons of two
treatments (so that the “exposed” are those given one treatment and
the “unexposed” are those given another treatment). The bounds of
the interval are selected so that any value within the interval is
considered close enough to the null for practical purposes. The test
hypothesis is then that the two treatments are not equivalent (RD is
outside the interval) and is rejected if P is less than alpha for all
values outside the interval of equivalence. This approach is called
equivalence testing, and it corresponds to rejecting the test hypothesis



when the 1 − α confidence interval falls entirely within the
equivalence interval.33

Note that the alternative hypothesis in all these examples
comprises a range of values. For a two-sided test, the alternative
comprises every possible value except the one being tested. For
epidemiologic effect measures, this two-sided alternative hypothesis
will range from absurdly large preventive effects to absurdly large
causal effects and include everything in between except the test
hypothesis. This hypothesis will be compatible with any observed
data. The test hypothesis, on the other hand, corresponds to a single
value of effect and therefore is readily consistent with a much
narrower range of possible outcomes for the data. Statistical
hypothesis testing amounts to an a�empt to falsify the test
hypothesis. It is natural to focus on a test hypothesis that is as
specific as possible because it is easier to marshal evidence against a
specific hypothesis than a broad one. The equivalence-testing
example shows, however, that in some cases, the alternative may be
more specific than the test hypothesis, and the test hypothesis may
range from absurdly large preventive effects to absurdly large causal
effects.

A major defect in the way all the above alternatives are usually
formulated is that they assume the statistical model is correct.
Because the model is never exactly correct and is often grossly
incorrect, a scientifically more sound formulation of the alternative
to the null hypothesis (for example) would be “either the null is false
or else the statistical model is wrong.”20 By adding the warning “or
else the statistical model is wrong” to the alternative, we allow for
the possibility that uncontrolled systematic errors were responsible
for the rejection.

Statistical Estimation
If Neyman-Pearson hypothesis testing is misleading, how should
results be interpreted and presented? In keeping with the view that
science is based on measurement—which leads in turn to
quantitative study objectives—the analysis of epidemiologic data can



be conceptualized as a measurement problem rather than as a
problem in decision-making. Measurement requires more detailed
statistics than the simple dichotomy produced by a statistical
hypothesis testing. Whatever the parameter that is the target of
inference in an epidemiologic study—usually an effect measure,
such as a ratio of rates or risks, but it can also be an incidence rate or
any other epidemiologic measure—it will be measured on a
continuous scale, with a theoretically infinite number of possible
values.

The data from a study can be used to generate an estimate of the
target parameter. An estimate may be presented as a single value on
the measurement scale of the parameter; this value is referred to as a
point estimate. A point estimate may be viewed as a measure of the
extent of the association, or (in causal analyses) the magnitude of
effect under study. There will be many forces that will determine the
final data values, such as confounding, measurement error, selection
biases, and “random” error. It is thus extremely unlikely that the
point estimate will equal the true value of the parameter.

It might be tempting to believe that an inferential emphasis on
estimation can coexist with an inferential emphasis on testing, but
they cannot. Selecting results for a�ention based on statistical
significance distorts the ability to achieve accurate measurement.11

For example, when power of a study is less than 100%, statistically
significant results are more likely to overestimate than to
underestimate the true value for the parameter, and results that are
not statistically significant are more likely to underestimate than to
overestimate the true value for the parameter. This distortion, a
mathematical fact, is an inevitable consequence of the selection
pressures exerted by the significance testing. Selecting results for
a�ention on the basis of statistical significance also fosters analytic
manipulations to achieve statistical significance. “Significance
questing” and “P-hacking” describe unplanned changes to study
design or analysis implemented to achieve a statistically significant
result.34-36 These changes hinder accurate estimation. In short,
selecting results for a�ention based on statistical significance



introduces distortions that preclude the goal of accurate estimation,
so the two inferential paradigms cannot coexist.

Confidence Intervals and Confidence Limits
One way to account for random error in the estimation process is

to compute P-values for a broad range of possible parameter values
(in addition to the null value). If the range is broad enough, we will
be able to identify an interval of parameter values for which the test
P-value exceeds a specified alpha level (typically 0.05). All parameter
values within the range are compatible with the data under the
standard interpretation of significance tests. The range of values is
called a confidence interval, and the endpoints of that interval are
called confidence limits. The process of calculating the confidence
interval is an example of the process of interval estimation.

The width of a confidence interval depends on the amount of
random variability inherent in the data-collection process (as
estimated from the underlying statistical model and the data). It also
depends on an arbitrarily selected alpha level that specifies the
degree of compatibility between the limits of the interval and the
data. One minus this alpha level (0.95 if alpha is 0.05) is called the
confidence level of the interval and is usually expressed as a
percentage.

If the underlying statistical model is correct and there is no bias, a
confidence interval derived from a valid test will, over unlimited
repetitions of the study, contain the true parameter with a frequency
no less than its confidence level. This definition specifies the
coverage property of the method used to generate the interval, not
the probability that the true parameter value lies within the interval.
For example, if the confidence level of a valid confidence interval is
90%, the frequency with which the interval will contain the true
parameter will be at least 90%, if there is no bias. Consequently,
under the assumed model for random variability (e.g., a binomial
model) and with no bias, we should expect the confidence interval to
include the true parameter value in at least 90% of replications of the
process of obtaining the data. Unfortunately, this interpretation for



the confidence interval is based on probability models and sampling
properties that are seldom realized in epidemiologic studies;
consequently, it is preferable to view the confidence limits as only a
rough estimate of the uncertainty in an epidemiologic result due to
random error alone. Even with this limited interpretation, the
estimate depends on the correctness of the statistical model, which
may be incorrect in many epidemiologic se�ings.1

Relation of Confidence Intervals to Significance
Tests and Hypothesis Tests
Consider now the relation between the confidence level and the
alpha level of hypothesis testing. The confidence level equals 1
minus the alpha level (1 − α) of the test used to construct the interval.
To understand this relation, consider the diagram in Figure 15-2.
Suppose that we performed a test of the null hypothesis with
α = 0.10. The fact that the 90% confidence interval does not include
the null point indicates that the null hypothesis would be rejected for
α = 0.10. On the other hand, the fact that the 95% confidence interval
includes the null point indicates that the null hypothesis would not
be rejected for α = 0.05. Because the 95% interval includes the null
point and the 90% interval does not, it can be inferred that the two-
sided P-value for the null hypothesis is greater than 0.05 and less
than 0.10.



Figure 15.2 Two nested confidence intervals, with the wider one
including the null hypothesis.

The point of the preceding example is not to suggest that
confidence limits should be used as surrogate tests of significance.
Although they can be and often are used this way, doing so defeats
all the advantages that confidence intervals have over hypothesis
tests. An interval-estimation procedure does much more than assess
the extent to which a hypothesis is compatible with the data. It
provides simultaneously an idea of the likely direction and
magnitude of the underlying association and the random variability
of the point estimate. The two-sided P-value, on the other hand,
indicates only the degree of consistency between the data and a
single hypothesis and thus reveals nothing about the magnitude or
even the direction of the association or the random variability of the
point estimate.37

For example, consider the data in Table 15-1. An exact test of the
null hypothesis that the exposure is not associated with the disease
gives a two-sided P-value of 0.14. (The methods used to calculate
this P-value are described in Chapter 17.) This result might be
reported in several ways. The least informative way is to report that
the observed association is not significant. Somewhat more
information can be given by reporting the actual P-value; to express
the P-value as an inequality such as P > 0.05 is not much be�er than
reporting the results as not significant, whereas reporting P = 0.14 at
least gives the P-value explicitly rather than degrading it into a



dichotomy. An additional improvement is to report P2 = 0.14,
denoting the use of a two-sided rather than a one-sided P-value.

TABLE 15-1
Hypothetical Data From a Cohort Study, Corresponding to the P-Value
Function in Figure 15-3

 Exposure  

 Yes No

Cases 9 2

Person-Years 186 128

Any one P-value, no ma�er how explicit, fails to convey the
descriptive finding that exposed individuals had about three times
the rate of disease as unexposed subjects. Furthermore, exact 95%
confidence limits for the true rate ratio are 0.7 and 13. The fact that
the null value (which, for the rate ratio, is 1.0) is within the interval
tells us the outcome of the significance test: The estimate would not
be statistically significant at the 1 − 0.95 = 0.05 alpha level. The
confidence limits, however, indicate that these data, although
statistically compatible with no association, are even more
compatible with a strong association—assuming that the statistical
model used to construct the limits is correct. Stating the la�er
assumption is important because confidence intervals, like P-values,
do nothing to address biases that may be present.

P-Value Functions
Although a confidence interval can be much more informative

than a single P-value, it is subject to the misinterpretation that values
inside the interval are equally compatible with the data, and all
values outside it are equally incompatible. Like the alpha level of a
test, however, the specific level of confidence used in constructing a



confidence interval is arbitrary; values of 95% or, less often, 99% or
90% are those most frequently used.

A given confidence interval is only one of an infinite number of
ranges nested within one another. Points nearer the center of these
ranges are more compatible with the data than points farther away
from the center. To see the entire set of possible confidence intervals,
one can construct a P-value function.38-40 This function, also known as
a consonance function41 or confidence-interval function,42 reflects the
connection between the definition of a two-sided P-value and the
definition of a two-sided confidence interval (i.e., a two-sided
confidence interval comprises all points for which the two-sided P-
value exceeds the alpha level of the interval).

The P-value function gives the two-sided P-value for the null
hypothesis, as well as every alternative to the null hypothesis for the
parameter. A P-value function from the data in Table 15-1 is shown
in Figure 15-3. Figure 15-3 also provides confidence levels on the
right and so indicates all possible confidence limits for the estimate.
The point at which the curve reaches its peak corresponds to the
point estimate for the rate ratio, 3.1. The 95% confidence interval can
be read directly from the graph as the function values where the
right-hand ordinate is 0.95, and the 90% confidence interval can be
read from the graph as the values where the right-hand ordinate is
0.90. The P-value for any value of the parameter can be found from
the left-hand ordinate corresponding to that value. For example, the
null two-sided P-value can be found from the left-hand ordinate
corresponding to the height where the vertical line drawn at the
hypothesized rate ratio = 1 intersects the P-value function.



Figure 15.3 P-value function, from which one can find all
confidence limits, for a hypothetical study with a rate ratio estimate

of 3.1 (see Table 15-1).

A P-value function offers a visual display that neatly summarizes
two key components of the estimation process. The peak of the curve
indicates the point estimate, and the concentration of the curve
around the point estimate indicates the precision of the estimate. A
narrow P-value function would result from a study with high
precision, which derives from a combination of the study size and its
efficiency (see Study Efficiency, below). Conversely, a broad P-value
function corresponds to a study that had low precision.

A confidence interval represents only one possible horizontal slice
through the P-value function, but the single slice is enough to
convey the two essential messages: Confidence limits usually
provide enough information to locate the point estimate and to
indicate the precision of the estimate. In large-sample epidemiologic
statistics, the point estimate will usually be either the arithmetic or
the geometric mean of the lower and upper limits. The distance
between the lower and upper limits indicates the spread of the full
P-value function.

The message of Figure 15-3 is that the example data are more
compatible with a moderate to strong association than with no
association, assuming the statistical model used to construct the
function is correct. The confidence limits, when taken as indicative of
the P-value function, summarize the size and precision of the



estimate.43, 44 A single P-value, on the other hand, gives no
indication of either the size or the precision of the estimate, and, if it
is used merely as a hypothesis test, might result in a Type II error if
there indeed is an association between exposure and disease.

Evidence of Absence of Effect or Incompatible
Results

Confidence limits and P-value functions convey information about
size and precision of the estimate simultaneously, keeping these two
features of measurement in the foreground. The use of a single P-
value—or (worse) dichotomization of the P-value into significant or
not significant ones—obscures these features so that the focus on
measurement is lost. A study cannot be reassuring about the safety
of an exposure or treatment if only a statistical test of the null
hypothesis is reported. As we have already seen, results that are not
significant may be compatible with substantial effects. Lack of
significance alone provides no evidence against such effects.45

Standard statistical advice states that when the data indicate a lack
of significance, it is important to consider the power of the study to
detect as significant a specific alternative hypothesis. The power of a
test, however, is only an indirect indicator of precision, and it
requires an assumption about the magnitude of the effect. In
planning a study, it is reasonable to make conjectures about the
magnitude of an effect to compute study-size requirements or power
(see below). In analyzing data, however, it is always preferable to
use the information in the data about the effect to estimate it directly,
rather than to speculate about it with study-size or power
calculations.46-50 Confidence limits and (even more so) P-value
functions convey much more of the essential information by
indicating the range of values that are reasonably compatible with
the observations (albeit at a somewhat arbitrary alpha level),
assuming the statistical model is correct. They can also show that the
data do not contain the information necessary for reassurance about
an absence of effect.



Freiman et al.30 used confidence limits for the RDs to reinterpret
the findings from 71 negative clinical trials. These confidence limits
indicated that many of the treatments under study were probably
beneficial, as seen in Figure 15-1. The inappropriate interpretations
of the authors in most of these trials could have been avoided by
focusing their a�ention on the confidence limits rather than on the
results of a statistical test.

For a study to provide evidence of lack of an effect, the confidence
limits must be near the null value and the statistical model must be
correct. In equivalence-testing terms, the entire confidence interval
must lie within the zone around the null that would be considered
practically equivalent to the null. Consider Figure 15-4, which
depicts the P-value function from Figure 15-3 on an expanded scale,
along with another P-value function from a study with a point
estimate of 1.05 and 95% confidence limits of 1.01 and 1.10.

Figure 15.4 A P-value function from a precise study with a relative
risk estimate of 1.05 and the P-value function from Figure 15-3.

The study yielding the narrow P-value function must have been
large and information dense to generate such precision. The
precision enables one to infer that, provided any strong biases or
other serious problems with the statistical model are absent, the
study provides evidence against a strong effect. The upper
confidence limit (with any reasonable level of confidence) is near the



null value, indicating that the data are not readily compatible with
large or even moderate effects. Or, as seen from the P-value function,
the curve is a narrow spike close to the null point. The spike is not
centered exactly on the null point, however, but slightly above it. In
fact, the data from this large study would be judged as statistically
significant by conventional criteria, because the (two-sided) P-value
testing the null hypothesis is about 0.03. In contrast, the other P-
value function in Figure 15-4 depicts data that, as we have seen, are
readily compatible with large effects but are not statistically
significant by conventional criteria.

Figure 15-4 illustrates the dangers of using statistical significance
as the primary basis for inference. Even if one assumes no bias is
present (i.e., that the studies and analyses are perfectly valid), the
two sets of results differ in that one result indicates there may be a
large effect, while the other offers evidence against a large effect. The
irony is that it is the statistically significant finding that offers
evidence against a large effect, while it is the finding that is not
statistically significant that raises concern about a possibly large
effect. In these examples, statistical significance gives a message that
is opposite of the appropriate interpretation. Focusing on interval
estimation and proper interpretation of the confidence limits avoids
this problem.

Numerous real-world examples demonstrate the problem of
relying on statistical significance for inference. One such example
occurred in the interpretation of a large randomized trial of
androgen blockade combined with the drug flutamide in the
treatment of advanced prostate cancer.51 This trial had been
preceded by 10 similar trials, which in aggregate had found a small
survival advantage for patients given flutamide, with the pooled
results for the 10 studies producing a summary odds ratio of 0.88,
with a 95% confidence interval of 0.76, 1.02.52, 53 In their study,
Eisenberger et al. reported that flutamide was ineffective, thus
contradicting the results of the 10 earlier studies, despite their
finding an odds ratio of 0.87 (equivalent in their study to a mortality
rate ratio of 0.91), a result not very different from that of the earlier



10 studies. The P-value for their finding was above their
predetermined cutoff for “significance,” which is the reason that the
authors concluded that flutamide was an ineffective therapy. But the
95% confidence interval of 0.70 to 1.10 for their odds ratio showed
that their data were readily compatible with a meaningful benefit for
patients receiving flutamide. Furthermore, their results were similar
to those from the summary of the 10 earlier studies. The P-value
functions for the summary of the 10 earlier studies, and the study by
Eisenberger et al., are shown in Figure 15-5. The figure shows how
the findings of Eisenberger et al. reinforce rather than refute the
earlier studies. They misinterpreted their findings because of their
focus on statistical significance.

Figure 15.5 P-value functions based on 10 earlier trials of
flutamide (solid line) and the trial by Eisenberger et al. (dashed

line), showing the similarity of results and revealing the fallacy of
relying on statistical significance to conclude, as did Eisenberger et

al., that flutamide has no meaningful effect.

Another example was a headline-generating study reporting that
women who consumed moderate amounts of alcohol retained be�er
cognitive function than nondrinkers.54 For moderate drinkers (up to
15 g of alcohol per day), the authors reported an RR for impaired
cognition of 0.81 with 95% confidence limits of 0.70 and 0.93,
indicating that moderate drinking was associated with a benefit with



respect to cognition. In contrast, the authors reported, “There were
no significant associations between higher levels of drinking (15 to
30 g/d) and the risk of cognitive impairment or decline,” implying
no benefit for heavy drinkers, an interpretation repeated in
widespread news reports. Nevertheless, the finding for women who
consumed larger amounts of alcohol was essentially identical to the
finding for moderate drinkers, with a risk-ratio estimate of 0.82
instead of 0.81. It had a broader confidence interval, however, with
limits of 0.59 and 1.13. Figure 15-6 demonstrates how precision,
rather than different effect size, accounted for the difference in
statistical significance for the two groups. The P-value function for
moderate drinkers was narrower than the estimate for heavy
drinkers. There is more information about moderate drinkers
because the prevalence of moderate drinking is higher than the
prevalence of heavy drinking. From the data, there is no basis to
infer that the effect size differs for moderate and heavy drinkers; in
fact, the hypothesis that is most compatible with the data is that the
effect is about the same in both groups. Furthermore, the lower 95%
confidence limit for the ratio of the RR in the heavy drinkers to the
RR in the moderate drinkers is 0.71, implying that the data are also
quite compatible with a much lower (more protective) RR in the
heavy drinkers than in the moderate drinkers.



Figure 15.6 P-value functions for moderate and heavier drinkers
of alcohol showing essentially identical negative associations with
decline in cognitive function. The authors incorrectly reported that

there was an association with moderate drinking, but not with
heavier drinking, because only the finding for moderate drinking

was statistically significant. (From Stampfer MJ, Kang JH, Chen J,
et al. Effects of moderate alcohol consumption on cognitive

function in women. N Engl J Med. 2005;352:245-253.)

These types of inferential errors have contributed to the perceived
crisis55, 56 in the reproducibility of scientific research.11, 57 The
literature on this perceived crisis has sometimes assessed whether
the results of two studies are concordant based on whether their
respective results are both statistically significant or not.58 This
approach has been used to assess reproducibility despite the fact
that the idea that two results—one statistically significant and the
other not—are necessarily different from one another is a well-
known fallacy,10, 59 as described above. Nonetheless, examples of
claims of irreproducible results based on P-values falling on
opposite sides of the commonly accepted Type I error rate are easy
to find. In one example, subcutaneous heparin was reported to
reduce the risk of deep vein thrombosis compared with intravenous
heparin (OR = 0.62, 95% CI 0.39, 0.98); a reanalysis disagreed with
the conclusion of a protective effect (OR = 0.61, 95% CI 0.30, 1.25).60

In a second example, authors concluded that their results (OR = 0.75,
95% CI 0.48, 1.17) did not support previous sparse evidence of a



protective effect of statins use against glioma (previous study results
were reported to be OR = 0.72; 95% CI 0.52, 1.00 and OR = 0.76; 95%
CI 0.59, 0.98).61 Finally, in a study of the association between
antidepressant use during pregnancy and autism spectrum disorder
in offspring, the authors reported a meta-analysis of earlier studies
(OR = 1.7; 95% CI 1.1, 2.6), a multivariate adjusted hazards ratio in
their study (1.59; 95% CI 1.17, 2.17), and an inverse probability of
treatment weighted hazards ratio in their study (1.61; 95% CI 0.997,
2.59).62 They concluded “antidepressant exposure compared with no
exposure was not associated with autism spectrum disorder in the
child.” Examples of this type of misinterpretation abound and likely
contribute to the perception that epidemiologic results are poorly
reproducible when, at least in these examples, the evidence base is
entirely consistent. It is impossible to estimate the degree to which
this common misinterpretation has distorted the impression of a
reproducibility crisis.57

Guidelines for Good Practice
Good data analysis does not demand that P-value functions be
plo�ed routinely. They are especially useful when comparing two or
more results. Overlap between the P-value functions will often
forewarn against interpreting two results as different when they are
not so different at all. For most results, though, it is sufficient to use
conventional confidence limits to generate the proper mental
visualization for the underlying P-value function. In fact, for large
studies, only one pair of limits and their confidence level is needed
to sketch the entire function, and one can easily learn to visualize the
function that corresponds to any pair of limits. If, however, one uses
the limits only to determine whether the null point lies inside or
outside the confidence interval, one is only performing a significance
test, and all of the biases and inferential errors described above will
ensue. It is lamentable to go to the trouble to calculate confidence
limits and then use them for nothing more than classifying the study
finding as statistically significant or not. One should instead



remember that the precise locations of confidence limits are not
important for proper interpretation. Rather, the limits should serve
to give one a mental picture of the location and spread of the entire
P-value function.

The main thrust of the preceding sections has been to argue the
inadequacy of statistical significance testing for inference about
effects. The view that estimation is preferable to testing has been
argued by many scientists in a variety of disciplines, including, for
example, economics, social sciences, environmental science, and
accident research. There has been a particularly heated and welcome
debate in psychology. In the overall scientific literature, hundreds of
publications have addressed the concerns about statistical
hypothesis testing. Some selected references include Rozeboom,63

Morrison and Henkel,64 Wulff,65 Cox and Hinkley,19 Rothman,66

Salsburg,67 Simon and Wi�es,68 Langman,69 Gardner and Altman,70

Walker,71 Oakes,72 Ware et al.,73 Pocock et al.,74 Poole,40, 43

Thompson,75 Evans et al.,76 Anscombe,77 Cohen,78 Hauer,79

Gigerenzer,3 Ziliak and McCloskey,80 Ba�erham and Hopkins,81

Marshall,82 the American Statistical Association9 statement, Lash,11

and the commentaries in Supplement 1 to Volume 73 (2019) of The
American Statistician. To quote Atkins and Jarre�32:

Methods of estimation share many of the problems of
significance tests—being likewise based on probability
model assumptions and requiring “arbitrary” limits of
precision. But at least they do not require irrelevant null
hypotheses to be set up nor do they force a decision about
“significance” to be made—the estimates can be presented
and evaluated by statistical and other criteria, by the
researcher or the reader. In addition, the estimates of one
investigation can be compared with others. While it is often
the case that different measurements or methods of
investigation or theoretical approaches lead to “different”
results, this is not a disadvantage; these differences reflect



important theoretical differences about the meaning of the
research and the conclusions to be drawn from it. And it is
precisely those differences which are obscured by simply
reporting the significance level of the results.

Indeed, because statistical hypothesis testing promotes so much
misinterpretation, we recommend avoiding its use in epidemiologic
presentations and research reports. Such avoidance requires that P-
values (when used) be presented without reference to alpha levels or
“statistical significance” and that careful a�ention be paid to the
confidence interval, especially its width and its endpoints (the
confidence limits).13, 44

Problems With Confidence Intervals
Because they can be derived from P-values, confidence intervals and
P-value functions are themselves subject to some of the same
criticisms as significance tests.1, 15, 16 One problem that confidence
intervals and P-value functions share with statistical hypothesis tests
is their very indirect interpretations, which depend on the concept of
“repetition of the study in a manner identical in all respects except
for random error.” Interpretations of statistics that appeal to such a
concept are called repeated-sampling or frequentist interpretations,
because they refer to the frequency of certain events (rejection by a
test or coverage by a confidence interval) in a series of repeated
experiments.

An astute investigator may properly ask what frequency
interpretations have to do with the single study under analysis. It is
all very well to say that an interval estimation procedure will, in 95%
of repetitions, produce limits that contain the true parameter. But in
analyzing a given study, the relevant scientific question is this: Does
the single pair of limits produced from this one study contain the
true parameter? The ordinary (frequentist) theory of confidence
intervals does not answer this question. The question is so important
that many (perhaps most) users of confidence intervals mistakenly



interpret the confidence level of the interval as the probability that
the answer to the question is “yes.”83 It is quite tempting to say that
the 95% confidence limits computed from a study contain the true
parameter with 95% probability. Unfortunately, this interpretation
can be correct only for Bayesian interval estimates (discussed later
and in Chapter 23), which often diverge from ordinary confidence
intervals.

There are several alternative types of interval estimation that
a�empt to address these problems. We will discuss two of these
alternatives in the next two subsections.

Likelihood Intervals
To avoid interpretational problems, a few authors prefer to replace
confidence intervals with likelihood intervals, also known as support
intervals.15, 17, 25 In ordinary English, “likelihood” is just a synonym
for “probability.” In the likelihood theory, however, a more
specialized definition is used: The likelihood of a specified parameter
value given observed data is defined as the probability of the
observed data, given that the true parameter equals the specified
parameter value. This concept is covered in depth in many statistics
textbooks; for example, see Berger and Wolpert,84 Clayton and
Hills,85 Edwards,25 and Royall.17 Here, we will describe the basic
definitions of the likelihood theory.

To illustrate the definition of likelihood, consider again the
population in Table 15-1, in which 186/(186 + 128) = 59% of person-
years were exposed. Under standard assumptions, it can be shown
that, if there is no bias and the true rate ratio is 10, there will be a
0.125 chance of observing nine exposed cases, given 11 total cases
and 59% exposed person-years. (The calculation of this probability is
beyond the present discussion.) Thus, by definition, 0.125 is the
likelihood for a rate ratio of 10, given the data in Table 15-1.
Similarly, if there are no biases and the true ratio is 1, there will be a
0.082 chance of observing 9 exposed cases given 11 total and 59%



exposed person-years; thus, by definition, 0.082 is the likelihood for
a rate ratio of 1, given the data in Table 15-1.

When one parameter value makes the observed data more
probable than another value and hence has a higher likelihood, it is
sometimes said that this parameter value has higher support from
the data than the other value.17, 25 For example, in this special sense,
a rate ratio of 10 has higher support from the data in Table 15-1 than
a rate ratio of 1, because those data have a greater chance of
occurring if the rate ratio is 10 than if it is 1.

For most data, there will be at least one possible parameter value
that makes the chance of ge�ing those data highest under the
assumed statistical model. In other words, there will be a parameter
value whose likelihood is at least as high as that of any other
parameter value and so has the maximum possible likelihood (or
maximum support) under the assumed model. Such a parameter
value is called a maximum-likelihood estimate (MLE) under the
assumed model. For the data in Table 15-1, there is just one such
value, and it is the observed rate ratio (9/186)/(2/128) = 3.1. If there
are no biases and the true rate ratio is 3.1, there will be a 0.299
chance of observing 9 exposed cases, given 11 total and 59% exposed
person-years, so 0.299 is the likelihood for a rate ratio of 3.1, given
the data in Table 15-1. No other value for the rate ratio will make the
chance of these results higher than 0.299, and so 3.1 is the MLE.
Thus, in the special likelihood sense, a rate ratio of 3.1 has the
highest possible support from the data.

As has been noted, Table 15-1 yields a likelihood of 0.125 for a rate
ratio of 10; this value (0.125) is 42% of the likelihood (of 0.299) for 3.1.
Similarly, Table 15-1 yields a likelihood of 0.082 for a rate ratio of 1;
this value (0.082) is 27% of the likelihood for 3.1. Overall, a rate ratio
of 3.1 maximizes the chance of observing the data in Table 15-1.
Although rate ratios of 10 and 1 have less support (lower likelihood)
than 3.1, they are still among values that likelihoodists regard as
having enough support to warrant further consideration; these
values typically include all values with a likelihood above one-
seventh of the maximum.15, 17, 25 Under a normal model for random



errors, such one-seventh likelihood intervals are approximately
equal to 95% confidence intervals.17

The maximum of the likelihood is the height of the likelihood
function at the MLE. A likelihood interval for a parameter (here, the
rate ratio) is the collection of all possible values whose likelihood is
no less than some specified fraction of this maximum. Thus, for
Table 15-1, the collection of all rate ratio values with a likelihood no
less than 0.299/7 = 0.043 (one-seventh of the highest likelihood) is a
likelihood interval based on those data. Upon computing this
interval, we find that all rate ratios between 0.79 and 20 imply a
probability for the observed data at least one-seventh of the
probability of the data when the rate ratio is 3.1 (the MLE). Because
the likelihoods for rate ratios of 1 and 10 exceed 0.299/7 = 0.043, 1
and 10 are within this interval.

Analogous to confidence limits, one can graph the collection of
likelihood limits for all fractions of the maximum (1/2, 1/4, 1/7, 1/20,
etc.). The resulting graph has the same shape as one would obtain
from simply graphing the likelihood for each possible parameter
value. The la�er graph is called the likelihood function for the data.
Figure 15-7 gives the likelihood function for the data in Table 15-1,
with the ordinate scaled to make the maximum (peak) at 3.1 equal to
1 rather than 0.299 (this is done by dividing all the likelihoods by the
maximum, 0.299). Thus, Figure 15-7 provides all possible likelihood
limits within the range of the figure.



Figure 15.7 Relative likelihood function based on Table 15-1.

The function in Figure 15-7 is proportional to

where IR is the hypothesized incidence rate ratio (the abscissa). Note
that this function is broader and less sharply peaked than the P-
value function in Figure 15-3, reflecting the fact that, by likelihood
standards, P-values and confidence intervals tend to give the
impression that the data provide more evidence against the test
hypothesis than they actually do.15

Some authors prefer to use the natural logarithm of the likelihood
function, or log-likelihood function, to compare the support given to
competing hypotheses by the data.15, 17, 25 These authors sometimes
refer to the log-likelihood function as the support function generated
by the data. Although we find log-likelihoods less easily
interpretable than likelihoods, log-likelihoods can be useful in
constructing confidence intervals.

Bayesian Intervals
As with confidence limits, the interpretation of likelihood limits is
indirect, in that it does not answer the question: “Is the true value



between these limits?” Unless the true value is already known (in
which case there is no point in gathering data), it can be argued that
the only rational answer to the question must be a subjective
probability statement, such as “I am 95% sure that the true value is
between these limits.”86, 87 Such subjective probability assessments,
or certainties, are common in everyday life, as when a weather
forecaster predicts 80% chance of rain tomorrow, or when one is
delayed while traveling and thinks that there is a 90% chance of
arriving between 1 and 2 hours after the scheduled arrival time. If
one is sure that the true arrival time will be between these limits, this
sureness represents a subjective assessment of 100% probability
(complete certainty) that arrival will be 1 to 2 hours late. In reality,
however, there is always a chance (however small) that one will be
delayed longer or may never arrive, so complete certainty is never
warranted.

Subjective Bayesian analysis is concerned with producing realistic
and rationally coherent probability assessments, and it is especially
concerned with updating these assessments as data become
available. Rationally coherent means only that assessments are free of
logical contradictions and do not contradict the axioms of the
probability theory (which are also used as axioms for frequentist
probability calculations).86-89

All statistical methods require a model for data probabilities. The
Bayesian analysis additionally requires a prior probability distribution.
In theory, this means that one must have a probability assessment
available for every relevant interval; for example, when trying to
study a rate ratio, before seeing the data one must be able to specify
one’s certainty that the rate ratio is between 1 and 2, and between ½
and 4, and so on. This prior-specification requirement demands that
one has a probability distribution for the rate ratio that is similar in
shape to Figure 15-3 before seeing the data. This is a daunting
demand, and it was enough to have impeded the use and acceptance
of Bayesian methods for most of the 20th century.

Suppose, however, that one succeeds in specifying in advance a
prior probability distribution that gives prespecified certainties for



the target parameter. Bayesian analysis then proceeds by combining
this prior distribution with the likelihood function (such as in Figure
15-7) to produce a new, updated set of certainties, called the posterior
probability distribution for the target parameter based on the given
prior distribution and likelihood function. This posterior distribution
in turn yields posterior probability intervals (posterior certainty
intervals). Suppose, for example, one accepts the prior distribution
as a good summary of previous information about the parameter
and similarly accepts the likelihood function as a good summary of
the data probabilities, given various possible values for the
parameter. The resulting 95% posterior interval is then a range of
numbers that one can be 95% certain contains the true parameter.

Figure 15.8 Study size in relation to 95% confidence interval width
for two cohorts of equal size with a risk difference of 0.1.

The technical details of computing exact posterior distributions
can be quite involved and were also an obstacle to the widespread
adoption of the Bayesian methods. Modern computing advances
have all but eliminated this obstacle as a serious problem; also, the
same approximations used to compute conventional frequentist
statistics can be used to compute approximate Bayesian statistics.

Another obstacle to Bayesian methods has been that the intervals
produced by a Bayesian analysis refer to subjective probabilities
rather than objective frequencies. Some argue that, because



subjective probabilities are just one person’s opinion, they should be
of no interest to objective scientists. Unfortunately, in
nonexperimental studies, there is (by definition) no identified
random mechanism to generate objective frequencies over study
repetitions; thus, in such studies, the so-called objective frequentist
methods (such as significance tests and confidence intervals) lack the
objective repeated-sampling properties usually a�ributed to them.1,

2, 16, 26, 27, 88, 90 Furthermore, scientists do routinely offer their
opinions and are interested in the opinions of colleagues. Therefore,
it can be argued that a rational (if subjective) certainty assessment
may be the only reasonable inference we can get out of a statistical
analysis of observational epidemiologic data. Some argue that this
conclusion applies even to perfect randomized experiments.14, 87, 91

At the least, Bayesian statistics provide a probabilistic answer to
questions such as “Does the true rate ratio lie between 1 and 4?” (to
which one possible Bayesian answer is “In light of the data and my
current prior information, I can be 90% certain that it does”). A more
general argument for the use of Bayesian methods is that they can
provide point and interval estimates that have be�er objective
frequency (repeated-sampling) properties than ordinary frequentist
estimates. These calibrated Bayesian statistics include Bayesian
confidence intervals that are narrower (more precise) than ordinary
confidence intervals with the same confidence level. Because the
advantages of procedures with Bayesian justification can be so
dramatic, some authors argue that only methods with a clear
Bayesian justification should be used, even though repeated-
sampling (objective frequency) properties are also desirable (such as
proper coverage frequency for interval estimates).92-94

In addition to providing improved analysis methods, the Bayesian
theory can be used to evaluate established or newly proposed
statistical methods. For example, if a new confidence interval is
proposed, we may ask: “What prior distribution do we need to get
this new interval as our Bayesian posterior probability interval?” It is
often the case that the prior distribution one would need to justify a
conventional confidence interval is patently absurd; for example, it



would assign equal probabilities to rate ratios of 1 and 1,000,000.16,

88, 95 In such cases, it can be argued that one should reject the
proposed interval because it will not properly reflect any rational
opinion about the parameter after a careful data analysis.16, 93

Under certain conditions, ordinary (frequentist) confidence
intervals and one-sided P-values can be interpreted as approximate
posterior (Bayesian) probability intervals.19, 24 These conditions
typically arise when li�le is known about the associations under
study. Frequentist intervals cease to have Bayesian utility when
much is already known or the data under analysis are too limited to
yield even modestly precise estimates. The la�er situation arises not
only in small studies, but also in large studies that must deal with
many variables at once, or that fail to measure key variables with
sufficient accuracy.

Summary
Statistics can be viewed as having many roles in epidemiology. Data
description is one role, and statistical inference is another. The two
are sometimes mixed, to the detriment of both activities, and are best
distinguished from the outset of an analysis.

Different schools of statistics view statistical inference as having
different roles in data analysis. The hypothesis-testing approach
treats statistics as chiefly a collection of methods for making
decisions, such as whether an association is present in a source
population or “superpopulation” from which the data are randomly
drawn. This approach has been declining in the face of criticisms
that estimation, not decision-making, is the proper role for statistical
inference in science. Within the la�er view, frequentist approaches
derive estimates by using probabilities of data (either P-values or
likelihoods) as measures of compatibility between data and
hypotheses, or as measures of the relative support that data provide
hypotheses. In contrast, the Bayesian approach uses data to improve
existing (prior) estimates in light of new data. Different approaches
can be used in the course of an analysis. Nonetheless, proper use of



any approach requires more careful interpretation of statistics than
has been common.



PRECISION AND STRATIFICATION
In many epidemiologic analyses, the crude data are divided into
strata to examine effects in subcategories of another variable or to
control confounding. The efficiency of a study can be affected
dramatically by stratifying the data. A study that has an overall
apportionment ratio that is favorable for precision (which will be a
ratio of 1.0 if there is no effect and no confounding) may
nevertheless have apportionment ratios within strata that vary
severely from low to high values. It is common to see some strata
with the extreme apportionment ratios of 0 and infinity (e.g., no
cases in some strata and no controls in others). The smaller the
numbers within strata, the more extreme the variation in the
apportionment ratio across strata is likely to be. The extreme values
result from zero subjects or person-time units for one group in a
stratum. Small numbers within strata result from having too few
subjects relative to the number of strata created. This sparse-data
problem can develop even with large studies, because the number of
strata required in the analysis increases geometrically with the
number of variables used for stratification. Indeed, sparse data are a
major limitation of stratified analysis, although the same problem
negatively affects regression modeling as well.

When comparisons within strata will be essential and much
variation in the apportionment ratio is expected across strata, then
matching on the stratification variables (Chapter 6) is one way to
improve the efficiency of the apportionment ratio within strata and
to reduce sparsity problems without increasing the study size. When
matching on all stratification variables is not feasible, increasing the
overall number of subjects will at least reduce data sparsity and
improve precision, even if only one group (e.g., the controls in a case-
control study) can be expanded.



PLANNING STUDY SIZE
Enlarging the size of a study is one of the key ways to reduce
random error in an epidemiologic estimate. Practical constraints on
resources inevitably limit study size, so one must plan accordingly.
One method that is used to plan the size of a study is to calculate the
study size based on conventional statistical “sample-size”
formulas.96-100 These formulas relate the size of a study to the study
design, study population, and the desired power or precision.

Study-size formulas, being purely mathematical, do not account
for anything that is not included as a variable in the formula. At best,
they serve only to provide rough guidelines, and in some situations,
they may be misleading from a broader perspective. For example,
conventional formulas do not weigh the value of the information
obtained from a study against its use of resources. Yet a focal
problem in planning the study size is determining how to balance
the value of greater precision in study results against the greater
cost. Solving the problem thus involves a cost-benefit analysis of
expending greater effort or funds to gain greater precision. Greater
precision has a value to the beneficiaries of the research, but the
value is indeterminate because it is always uncertain how many
beneficiaries there will be. Furthermore, the potential benefits of the
study involve intricacies of many social, political, and biologic
factors that are almost never quantified. Consequently, only informal
guesses as to a cost-efficient size for an epidemiologic study are
feasible. Although study-size determination can be aided by
conventional formulas, the final choice must also incorporate
unquantified practical constraints and implications of various study
sizes.

In this section, we will discuss the considerations that the
researcher should weigh in planning the size of a study. The term
“sample size” is often used to describe the study size, possibly
borrowed from the vocabulary of survey sampling design. We prefer
to use “study size” to avoid confusing a study of causal effects with
a survey to describe a large population based on a sample from it.



A study size is the primary determinant of the precision of the
estimates that come from the study, but be�er precision—the
reduction of random error—is affected not only by the study size but
by the study efficiency as well, as described above. Furthermore, the
measurement of study efficiency or study informativeness depends
on assumptions that are often absent or implicit in statistical
discussions, such as what constitutes the most relevant hypotheses
and costs.

Study Efficiency
Study efficiency can be thought of as the amount of information that
a study produces in relation to its size or cost. Efficiency usually
depends on issues such as the ratio of the number of subjects or
person-time units across categories of exposure or disease. A study
with 1,000,000 people may seem large, but if only 100 of them are
exposed and 999,900 are unexposed, it will have considerably less
information than a study with an even balance of exposed and
unexposed subjects. When the study factor has no effect and no
adjustment for confounding is needed, equal apportionment into
exposure groups is the most efficient cohort design.101 In case-
control studies, the study efficiency will depend on the balance
between case and control groups. As described in Chapter 8, case-
control designs are best conceptualized as efficient cohort designs
that include all cases and a subset of the cohort giving rise to the
cases. This conceptualization rests on the idea of optimizing
apportionment of study subjects: cases are usually few in relation to
the size of the population giving rise to the cases, so over-
representing cases by design is efficient. On the other hand, in cohort
studies, it may be costly to engineer a desirable balance of exposure
and may lead to inefficiencies in trying to use the data to study a
wider range of exposures. In short, if the apportionment of study
subjects by categories of exposure or outcome can be manipulated in
the study design, it may be advantageous to design the study with a
good balance between groups.



The considerations involved in designing an efficient study
usually pit the costs of doing so against the benefits, which may be
difficult to assess. Nonetheless, it is worth knowing that when the
study exposure has no effect and no adjustment is needed, equal
apportionment into exposure groups is the most efficient cohort
design.101 For example, when no association is expected for any
reason (which is to say, in the absence of any source of association,
whether bias or exposure effect), a cohort study of 2,400 persons will
be most efficient statistically if it comprises 1,200 exposed and 1,200
unexposed persons for study (a 1:1 exposed-unexposed allocation
ratio). Similarly, in a case-control study, when no association is
expected, it will be most efficient to have an equal number of cases
and controls (a 1:1 case-control allocation ratio). Nonetheless, since
we do not know whether an association is present, translating these
statistical facts into a directive for study design assumes that the
primary goal of the analysis is to evaluate the hypothesis of no
association (or, with additional assumptions, no effect).

In the presence of an effect, the statistically most efficient
allocation ratio will differ from equal apportionment (1:1) by an
amount that depends on the magnitude of the effect.101 In the cohort
example, if priority were instead given to testing the hypothesis that
there is a doubling of risk, parallel derivations lead to allocating
more of the total to the unexposed, for whom risk is lower than the
exposed. For a disease that would occur in no more than a few
percent of the cohort, this could lead to a 1:2 allocation ratio (800
exposed and 1,600 unexposed) as more efficient than 1:1 allocation. If
equal weight is given to the hypotheses of no association and
doubling of risk, the efficient allocation would be nearer 1,000
exposed and 1,400 unexposed than either 1:1 or 1:2 allocation.

Efficiency of a study may be difficult to modify. For example, if
exposure is rare, population samples will show a preponderance of
unexposed subjects unless special populations are sought. Both
cohort studies and case-control studies drawn from a general
population tend to be inefficient if exposure has low prevalence.
Two-stage (two-phase) sampling designs that account for both



exposure and disease frequency are available, although the data they
produce requires special analysis methods.

Adjustments for biases such as confounding will also influence
study precision, usually diminishing it. In many epidemiologic
analyses, the crude data are divided into strata to examine exposure
effects within subcategories of another variable, or to control
confounding. The efficiency of a study can be affected dramatically
by stratifying the data. A study that has an overall apportionment
ratio that is favorable for precision, with close to overall balance
between the main groups to be compared, may nevertheless have
apportionment ratios within strata that vary severely from low to
high values. It is not uncommon to see some strata with the extreme
apportionment ratios of 0 and infinity (e.g., a case-control study with
no cases in some strata and no controls in others). The smaller the
numbers within strata, the more extreme the variation in the
apportionment ratio across strata is likely to be.

The most extreme values occur when there are zero subjects or
person-time units for one group in a stratum. The chance of zero
subjects or person-time units for a group in a stratum is increased
when there are many strata in relation to the number of study
subjects. This sparse-data problem can develop even with studies
based on large numbers of subjects. It not only affects study
efficiency but can introduce a bias in the estimation of ratio
measures. This sparse data bias can be substantial, and is more
common than realized, because the number of strata required
increases geometrically with the number of variables used for
stratification.102 Indeed, sparse data are a major limitation of
stratified analysis, although the problem is not limited to stratified
analysis, and can affect regression modeling as well, where it may go
unnoticed.103, 104

When comparisons within strata will be essential and substantial
variation in the apportionment ratio is expected across strata, then
matching on the stratification variables (see Chapter 6) is one way to
improve the efficiency of the apportionment ratio within strata and
to reduce sparse-data problems without increasing the overall study



size. It is, however, not guaranteed to improve efficiency and may
even harm it, especially in case-control studies and especially when
matching on variables that are unrelated to the outcome variable.
When matching on all stratification variables is not feasible or
advisable, increasing the overall number of subjects may mitigate
sparse-data problems and improve overall study precision, even if
only one group (e.g., the control series) can be expanded.

Study Size
Study size is only adjustable within the constraints of available data
and budget. Even when it is not adjustable (e.g., one has only a fixed
data base for use), however, study size is usually the largest
determinant of study precision. Considerations of study size in the
planning stage of a research project are thus essential for
investigators and reviewers to assess the potential informativeness
of a study.

In planning a study, assessing the informativeness may be
addressed in various ways. The typical approaches involve judging
the informativeness of a potential study by postulating one or more
possible study sizes and calculating a measure of informativeness for
each. Often this amounts to calculating the statistical power of the
study for a statistical test of a targeted hypothesis (usually but not
necessarily a “null” hypothesis) for a range of possible study sizes.

To review briefly these terms and concepts, and their relationships
to the study size, we note that conventional statistical hypothesis
tests can usually be described as producing a P-value that will be
compared to a critical cutoff α. As described above, and subject to all
of the limitations already mentioned, the event of P ≤ α is usually
taken as “rejection” or “statistical significance” at level α, although
actual rejection or significance should depend on many other
considerations besides the result of a statistical test. The false-
positive rate of the test is the probability that P ≤ α if the tested
hypothesis is correct and is also known as the Type I error rate,
alpha error rate, or false-rejection rate. The P-value from the test is
said to be valid if the probability that P ≤ α equals α (i.e., if the false-



positive rate is α). The power of the test for detecting a specific
alternative to the tested hypotheses is the probability that P ≤ α
when the alternative is correct; the value of 1 − power is called the
false-negative rate, Type II error rate, or beta-error rate, is often
denoted by β.

The Imbalance of Power in Traditional Study-Size
Computations
There are many formulas that relate study size to power, taking into
account design features such as the apportionment ratios of the
exposure or outcome groups, whether subjects are clustered by some
variable, and what covariates will be controlled analytically. The
following problems apply to them all.

The test cutoff α is usually chosen to be 5%, although that choice is
rarely explicitly justified. The theory says that α should be chosen to
reflect the actual cost of false-positive errors,105, 106 with α being
smaller if false positives are costly compared with false negatives
and larger in the reverse situation. For a valid test, the chance α of
false-positive error and the chance β of false-negative error are
inversely related to each other, so in choosing α and β, there is an
inevitable trade-off between the risks of the two errors. This
alignment of acceptable error rates with values is discussed above
but seldom implemented in practice.

Traditional study-size requirements assume that a power of only
80% is acceptable when conducting a test with α = 5%, although (as
with α = 5%) that choice is rarely explicitly justified. Although 80%
may at first sound high, it means that the false-negative rate β is
20%, which would be wholly unjustified if false negatives were very
costly and false positives were not. Adopting such a gross
imbalance, allowing the false-negative rate to be four times the false-
positive rate, may reflect nothing more than the fact that it results in
a much smaller study-size requirement than if both the acceptable
false-positive and false-negative rates were set to be 5%.



Complicating ma�ers is that the costs may be radically different
for different stakeholders in a problem; for example, in litigation
claiming harms from an industrial chemical, false positives are
typically very costly for the defendant (e.g., the chemical
manufacturer) but beneficial for the plaintiff demanding
compensation (e.g., the exposed); conversely false negatives are
beneficial for the defendant but costly for the plaintiff. This
difference in acceptable error rates means that the tradition of
accepting a higher false-negative rate than a false-positive rate when
designing studies to test a null hypothesis is a tradition favoring the
defendant and more generally favors the null hypothesis over the
alternative.

The traditional imbalance in favor of the null in the study design
and testing can lead to apparently paradoxical results in which a
study with “high power” (e.g., 90%) may fail to reject the null at the
5% level, yet exhibit data that statistically favor the alternative
according to other conventional criteria.107 To avoid such imbalance
and its consequences, one may instead seek equal rates of both
errors, e.g., by designing a study to have 95% power (β = 5%) when
using α = 5%. A justification for inequality in terms of error costs
may instead be sought, but the justification will not apply to those
whose costs differ from the costs assumed by the justification.

Other Drawbacks of Power Calculations
A glaring drawback of power calculations is that they are based on
dichotomous statistical testing (technically, Neyman-Pearson
hypothesis testing for statistical decisions), and as such they
promulgate the “dichotomania” that is characteristic of significance
testing, classifying the results of a quantitative exercise into two
ultimate categories, significant or not significant. This type of
thinking allows divergent conclusions to be drawn from possible
study results that might differ li�le, but with the two results falling
on different sides of the demarcation for significance. This critical
limitation has been described in detail above.



Relying on power calculations can also lead to overestimation of a
study’s informativeness. For example, if a study is planned to have
90% power with α = 5% and the effect is postulated to be a rate ratio
of 3.0, the power calculations imply that the study will give
statistically significant results with 90% probability, assuming that
the statistical model used applies (a tall assumption) and that all
other relevant factors, such as control of confounding, are
sufficiently taken into account. Imagine that the actual effect is just
what was assumed, a rate ratio of 3.0, and the study is conducted at
the size that corresponds to 90% power. If the estimated rate ratio
had been instead 1.9 or less (which would occur 9% of the time with
a true rate ratio of 3), that result would have P > 0.05 by the null test
and so be easily mistaken for supporting the null (a Type II error).
But if the estimate were 1.9, the confidence interval around it would
include 3 as well as 1, showing that the result is inconclusive
according to the α = 5% criterion. More generally, a study will be
incapable of discriminating between the null and the alternative at a
rate equal to the false-negative rate, not the false-positive rate, and
thus a study “powerful” by the usual weak standards will often
produce results that are ambiguous when interpreted correctly.

Another drawback of power calculations is that they are highly
dependent on the alternative chosen for the calculation. Those
wanting to claim high power need only use a large value for the
alternative, at least up to the point before it becomes obvious they
are “gaming” the calculation. Conversely, those wishing to condemn
a study as “underpowered” need to only select a small alternative. In
reality, the informativeness of a study grows progressively with
increasing association or effect size and should be viewed on a
continuum. One step toward this goal when planning studies is to
plot power against alternatives and do so for different possible study
sizes. A power curve graphs study power against effect size and
shows the continuous relation between the two.

For all the above reasons and more, power calculations can be
misleading when analyzing study designs and study data.47-49, 107 These



problems lead to considering study precision directly for design as
well as for analysis,100, 108 as described next.

Factors Influencing Study Precision
Various factors affect precision of an effect estimate in a study; these
are related to study design features and the analytic methods used.
For that reason, there are numerous different formulas, mostly based
on statistical power, but referred to as “sample size” formulas, that
are used to calculate the study size. We do not cover the range of
formulas that apply to the entire spectrum of epidemiologic research
designs, but below we give a simple general formula to illustrate the
inputs needed. Suppose we are planning a cohort study that is
intended to measure and compare risk in two groups, so that the
denominators are the number of persons in each exposure group.
This situation will also include randomized trials that measure
outcomes as risks. A simple formula for study size for this type of
study was given by Kelsey et al.109:

where

N1 = size of exposed cohort
R = N0/N1 = ratio of size of unexposed cohort, N0, to size of

exposed cohort, N1
Zα/2 = standard normal deviate corresponding to the alpha level of

the hypothesis test
Zβ = standard normal deviate corresponding to the desired study

power
p1 = proportion of exposed cohort hypothesized to develop disease
p0 = proportion of unexposed cohort expected to develop disease



p = (p1 + Rp0)/(R+1)
D = p1 − p0

Notice what must be postulated to compute the study size:

1. the desired power of the study (1 − β),
2. an alpha level for a significance test,
3. the relative size of the unexposed and exposed cohorts, R,
4. the risk among unexposed, p0, and
5. either p1 or the hypothesized RD, D

If the investigator is interested in estimating an RR from a study
instead of an RD, then Equation 15-1 can still be used, by solving
p1 = RRp0. If the cohort study is aiming to measure rates rather than
risks, this formula can still be used as a rough approximation by
converting the amount of person-time to person denominators N1
and N0 by multiplying the person-time by the anticipated average
amount of time followed.

Equation 15-1 can also be used to calculate the size of a case-
control study. To do so, one would redefine N1 and N0 as the size of
the case group and control group, respectively, and p1 and p0 will be
the proportion of cases and controls, respectively, that are exposed.
If the study is planned based on an anticipated odds ratio,
OR = p1(1 − p0)/[p0(1 − p1)], then one needs to specify p0 and the OR
and solve for p1:

When case-control studies involve individual matching retained in
the analysis, any matched set that is completely concordant for



exposure (that is, if the case and all matched controls have the same
exposure value) is effectively lost to the study, as that set contributes
no information about the conditional odds ratio. Thus, study size
calculations for matched case-control studies are affected by the
degree of correlation between the matching factors and the exposure,
as well as the ratio of controls to cases. Power and study size
formulas for matched case-control data were presented by
Mie�inen.110

Estimating Study Size Based on the Confidence
Interval Width
Instead of statistical power, one can plan a study by anticipating the
study precision directly.111 Specifically, one can postulate the desired
width of the study confidence interval and examine how that varies
with the study size. If we start with the formulas that are used to
obtain confidence intervals and set them equal to a desired width,
we can solve these equations for the study size. The particular
formula to use will depend on which of the three types of data will
be involved in the study: (1) risk data with person denominators; (2)
rate data with person-time denominators; or (3) case-control data.
For each type of data, there will be a formula for a difference
measure of effect and another formula for a ratio measure of effect.
Case-control studies are an exception, as there is no difference
measure.

For difference measures, the asymptotic confidence interval is
obtained from

where  is the point estimate of the risk or rate difference, Z is
the value from a standard normal distribution corresponding to the



level of confidence (e.g., 1.96 for 95% CI), and  is the standard
deviation (also referred to as the standard error) of the estimate.

The corresponding formula for the risk, rate, or odds ratio is

For a simple approach to estimating study size from these
expressions, we can assume that crude data will be the basis for the
analysis. This assumption may overstate the precision of the result,
as control for confounding often costs some precision. We will also
assume that there are no missing data. The effects of these
assumptions might need to be considered in the final study
planning.

To obtain the study size that corresponds to a given confidence
interval width, some design features and other factors must be
specified. In a cohort study, these specifications include the
following:

1. the risk or rate among unexposed (p0 for risk, I0 for rate),
2. the risk or rate among exposed (p1 or I1),
3. the relative size of the unexposed and exposed cohorts, R,
4. the desired level of precision, and
5. the confidence level.

For item 2 above, if the rate difference or rate ratio is specified, p1
or I1 can be calculated from the difference or ratio and from p0 or I0.
For item 3, the relative size of the cohorts, R, will be expressed as the
ratio of the size of the unexposed cohort to that of the exposed
cohort. N1 will be the size of the exposed cohort and N0 the size of
the unexposed cohort, with R = N0/N1. For risk data, N1 will
represent people and for rate data, N1 will represent person-time.
The desired level of precision can be expressed in various ways; here



we will express precision as the absolute width of the confidence
interval for difference measures of effect, and as the ratio of the
upper confidence limit to the lower confidence limit for ratio
measures of effect. The level of confidence corresponds to Z in the
confidence interval formulas above; Z is the value of the standard
normal distribution such that the area under the curve from −Z to +Z
equals the confidence level. Z is 1.96 for a 95% confidence interval.

For case-control studies, we use a slight variation in the above list.
Rather than risk or rates, p1 and p0 refer to the respective exposure
prevalences among cases and controls. Alternatively, we can specify
p0 and the odds ratio, OR, from which p1 can be calculated as

Standard error formulas used for risk and rate differences, risk
and rate ratios, and odds ratio are given in Table 15-2. From these,
the study size formulas can readily be derived (Table 15-3). As an
example, consider a study based on risk data and focused on RD as
the measure of interest. Denoting F as the absolute width of the RD
that we desire to achieve for a study’s confidence interval, we can
solve for N1 as:

TABLE 15-2
Standard Deviation Formulas for Crude Measures of Epidemiologic
Effect

Risk difference



a = exposed cases
b = unexposed cases
N1 = total exposed people
N0 = total unexposed people

Risk ratio (on log scale)
a = exposed cases
b = unexposed cases
N1 = total exposed people
N0 = total unexposed people

Incidence rate difference
a = exposed cases
b = unexposed cases
N1 = total exposed person-time
N0 = total unexposed person-time

Incidence rate ratio (log scale)
a = exposed cases
b = unexposed cases
N1 = total exposed person-time
N0 = total unexposed person-time

Odds ratio (case-control study, log
scale)
a = exposed cases
b = unexposed cases
c = exposed controls
d = unexposed controls

Adapted from Rothman KJ. Epidemiology, an Introduction. 2nd ed. New York,
NY: Oxford University Press; 2012:chap 9. Formulas 9-2 to 9-6.

TABLE 15-3
Study Size Formulas Based on the Width of Confidence Interval

Risk data, estimating risk difference

Risk data, estimating risk ratio



Rate data, estimating rate difference

Rate data, estimating rate ratio

Case-control data, estimating odds ratio

N1 = size of the exposed cohort (persons or person-time).

M1 = size of case group in the case-control study.

R = size of the unexposed cohort divided by size of the exposed cohort; in the
case-control study, size of the control group divided by size of the case group.
p1 = risk in the exposed cohort; in the case-control study, exposure prevalence
in cases.

p0 = risk in the unexposed cohort; in the case-control study, exposure
prevalence in controls.

I1 = rate in the exposed cohort.

I0 = rate in the unexposed cohort.

F = width of the desired confidence interval.

Suppose that p1 = 0.4 and p0 = 0.3, corresponding to an RD of 0.1. If
we plan a study with three times as many unexposed as exposed
people (R = 3), and we wish the 90% confidence interval to span a
distance of 0.08 (so Z = 1.645), Equation 15-5 gives a value for N1 of
524 people and a total for the study size of 524 + 1,573 = 2,097. With a
study of this size, the SD(RD) would be 0.0243, and half of a 90%
confidence interval would be equal to 1.645 × 0.0243 ≈ 0.04, giving a
full confidence interval with a width of about 0.08.

Similarly, the same study could be planned with respect to desired
precision for the RR. For ratio measures, it is convenient to specify
the precision in terms of the magnitude of the ratio of the upper
bound to the lower bound, which leads to a constant width on the
log scale. For example, the following confidence intervals all have
the same precision, with a ratio of upper/lower bound of 2:1.0 to 2.0,



1.5 to 3.0, 0.8 to 1.6, etc. The formula for study size of a cohort study
with person denominators giving a fixed value for the ratio of the
upper to lower bound for RR confidence interval is

where F is the desired ratio of upper to lower bound for the
confidence interval. If we wish F to be 2, and assuming again that
p1 = 0.4 and p0 = 0.3, R = 3, and this time using a 95% confidence
interval, so that Z = 1.96, Equation 15-6 gives a value for N1 of 73
people and a total study size of 291 people. This size should produce
95% confidence intervals that on the average will have an upper
bound that is approximately twice the magnitude of the lower
bound. If a study of this size produced results that were equal to the
expected risks in the exposed and unexposed groups, we would
have 29 exposed cases and 66 unexposed cases, and the 95%
confidence interval for the RR would be about 0.93 to 1.86.

Table 15-3 gives all five study size formulas based on the width of
the confidence interval, according to the type of data and type of
effect measure. Figure 15-8 illustrates the use of the formulas with a
graph showing the relation between size of a cohort study
measuring risks and the width of a confidence interval for two
values of p0.

Estimating Study Size Based on the Probability
That Upper Confidence Bound Stays Below a Level
of Concern
Another way to use precision to plan the size of a study arises when
the aim is to provide reassurance about the absence of a strong
effect. No study can provide evidence for the absence of a small
effect, but it is feasible and reasonable to plan a study aimed at



indicating the low compatibility between study results and strong
effects, when there is a strong prior of li�le or no effect. In this
situation, one can choose an effect level of practical concern and aim
to design the study to produce a confidence interval with an upper
bound below that demarcation point. Equation 15-7 and equations in
Table 15-3, can be used for this calculation, with two small
modifications: (1) 4Z2 must be replaced with (Z´ + Z)2, where Z´ is
the value of the cumulative normal distribution that corresponds to
the desired probability that the upper confidence bound is below the
demarcation point chosen and (2) the value of F in the formulas
should be the demarcation point, rather than the width of the
confidence interval. For example, if one wishes to have 90%
probability that the upper bound for a rate ratio in a cohort study is
below 2.0, assuming that the exposure has no effect, Z´ would be
1.282, F would be 2, and the study size for a rate-data study using
95% confidence limits with a rate of 10 cases per 1,000 person-years
among unexposed and among exposed, and equal sized exposed
and unexposed cohorts, would be 4,374 person-years in each of the
two cohorts, for a total of 8,748 person-years. If a study of this size
had results equal to the expected value (44 cases in each of the two
cohorts), the 95% confidence interval would be about 0.66 to 1.52,
with an upper bound well below 2. However, the point estimate will
be below 1.3 with 90% probability under the conditions assumed,
and the upper bound of the 95% confidence interval would be 2.0
when the point estimate is 1.3.

Summary
Power as a planning tool for study size perpetuates the drawbacks of
statistical significance testing. These drawbacks include the
temptation to dichotomize study results into qualitative categories
that notoriously have led to misinterpreting nonsignificant findings
to be support for the null hypothesis and misinterpreting small,
precise significant findings to be strong evidence against the null.

The formulas presented here for planning study size are keyed to
the anticipated precision of the study and are consistent with the



objective of accurate estimation and the inferential goal of
interpreting findings as continuous measures that are estimated with
varying degrees of precision. Study size is a central determinant of
the precision of study results, and it is natural to consider a study’s
precision in determining or anticipating the size of a study. Given
the many unknown elements in implementing an epidemiologic
study, the formulas here provide rough approximations, based on a
simple crude analysis of data. Consequently, the results are likely to
be underestimates of the study size needed for the intended
precision in the light of actual data. In particular, control of
confounding will usually widen the confidence interval, and missing
data will also reduce precision. The degree of loss of precision from
these factors will depend on the circumstances of a particular study.

Planning the size of a study requires as input some information
that the study itself is intended to elucidate, such as the risk among
unexposed and the effect size. This input is needed regardless of
whether one is computing study size based on power or on
precision. Uncertainty about these values can be addressed by
graphing curves for different assumed values of these parameters, as
in Figure 15-8. Another possible approach to addressing uncertainty
about risks and effects would be to postulate a distribution for these
parameters and to use Monte Carlo simulation, drawing repeated
samples from the assumed distribution, to estimate study precision.
The Monte Carlo method could also be used to extend these
formulas, which apply only to dichotomous exposures. Using a
Monte Carlo approach, one could assess the precision of more
complicated analyses, such as precision in estimating trends in effect
over a range of exposure levels, results from stratified analyses, or
results affected by systematic errors (see Chapter 29).
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